Halcrow

Contents

- The brief
- Feasibility study
- Risk assessment
- Cost-benefit analysis
 - Primary assumptions
 - Risk parameters
 - Monte Carlo simulations
 - Results
- Recommendation

The Brief

- To undertake a risk assessment and a cost-benefit analysis regarding the a fire suppression system in NTC
- Make a clear recommendation yes or no

New Tyne Crossing

Operational features

Excellent safety regime at Tyne Tunnel to be continued and enhanced:

- Escorting of permitted dangerous goods vehicle through the tunnel
- Inspection of heavy goods vehicles prior to entry into the tunnel
- Tunnel control room manned 24 hours a day, with CCTV and Automatic Incident Detection monitors
- Rapid response vehicles with on-board fire-fighting facilities
- Tunnel closure barriers, to prevent entry into the tunnel in an emergency

Note: 'free flow' traffic tolling regime upon the opening of the two tunnel tubes, with only random inspection of vehicles

Structural Fire Safety Features

- A separate evacuation passageway in both tunnels, with double leaf doors at approximately 100m intervals
- Tunnel linings protected for two hours to the enhanced hydrocarbon curve

Fire protection

- Duplicated power supplies
- Smoke detection via digital image processing
- Public access emergency panels at 50 metre intervals
- Locked electrical distribution point panels and Fire Service emergency panels at 50m intervals, including hose reels, hydrants and gate valves
- Combustible gas detection equipment system and a foam blanket suppression in the mid-river sump, together with associated alarms.
- Comprehensive CCTV coverage of the tunnels and approach roads

Smoke Control

- Longitudinal ventilation system in both tunnel bores, controlled by an environmental control system and smoke panels
- Pressurised evacuation passageways

Communications

- Public use emergency telephones
- Emergency radio network with mobile phone support
- Radio Re-Broadcast and Interrupt Facilities
- A Public Address system with speakers in both the traffic spaces and the evacuation passageway

Evacuation Aids

- Provision for 10% of the minimum night time lighting to be supported by UPS equipment, for safe evacuation of the tunnel
- Internally illuminated "running man" signs above each passageway door
- Variable message board signs on the walls and inside the passageway
- 'Switch on radio' signs
- Wall mounted direction signs to nearside emergency exits
- "Wig –Wag" signs above the nearside lane activated by the opening of the door

Fire Suppression System

Typical Fire Suppression Test Results

Expected HRR without fire suppression = 75 MW

Effectiveness of Fire Suppression

- For minor fires no effect assumed
- For severe fires 50% reduction in in fires progressing from minor to severe (for damage & delay), 25% corresponding reduction for injuries
- For very severe and catastrophic fires 66% reduction in in fires progressing from minor to severe (for damage & delay), 33% corresponding reduction for injuries

Stakeholders' Involvement

Questionnaires sent to, and meetings held with:

- Tyne & Wear Passenger Transport Authority
- Tyne Tunnels
- Bouygues Travaux Publics
- High-Point Rendel
- Highways Agency
- Tyne & Wear Fire & Rescue Service

Cost-Benefit Assessment

 Benefit to Cost Ratio = Relevant Benefits / Relevant Costs

over the selected assessment period

- Need to account for the time value of money, via discount rates (HM Treasury's Green Book)
- Inflation assumptions are as per the Department for Transport's COBA Manual

Benefits and Costs

Possible benefits:

- Reduction in cost of injuries and emergency services attendance
- Reduction in traffic delays
- Reduction in cost of tunnel damage

Costs:

- Capital costs of fire suppression system
- Cost of refurbishment and maintenance for the fire suppression system

NTC Project Phases

Year	Project Phase	Traffic flow management	Is fire suppression system an option in the operating tunnel?
2007 to 2011	1	Bi-directional	No
2011 to 2012	2	Bi-directional	Yes
After 2012	3 &4	Uni-directional	Yes

Breakdown of Fire Costs

Cost Sources

Benefit Sources

Cost Sources

Benefit to Cost Ratio

Average BCR = 1.27

Recommendation

- Installation of fixed fire suppression system recommended
- Recommendation was approved by TDSCG and TWPTA

Halcrow

Review

- The brief
- Feasibility study
- Risk assessment
- Cost-benefit analysis
 - Primary assumptions
 - Risk parameters
 - Monte Carlo simulations
 - Results
- Recommendation