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Agenda	and	Problem	Statement	

Task 1 – Spray Characterization
•What are the discharge characteristics of water-mist sprays 
issued by commercial nozzles?

•What physical parameters are to be investigated to 
quantitatively assess their performance?

•What spray-related mechanisms are of significant interest 
in determining suppression?

Task 2 – Suppression in Full-Scale Scenarios
•How does the spray actually perform against a real-
scale severe fire case?

•What parameters are to be measured to quantitatively 
evaluate suppression performance?

•How is suppression performance influenced by the 
introduction of additives to water?
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Task	1	– Motivation

TO PROVIDE A DETAILED CHARACTERIZATION OF WATER-MIST SPRAYS 

IN TERMS OF DROP-SIZE DISTRIBUTION AND SPATIAL DISPERSION

FIRE 
PROTECTION 

ENGINEERING

STANDARDS (NFPA, UL, etc.) and 
DESIGN (number/height of nozzles, etc.)

SUPPRESSION 
MODELS

(Physical/analytical, 
CFD)

HEAT TRANSFER 
(Suppressing agent with surroundings, solid 

walls, etc.)

FLUID DYNAMICS
(Flow/flame interaction, jet penetration, etc.)

DISCHARGE CHARACTERISTICS OF THE SPRAY



12th International Water Mist Conference – Barcelona, Spain – November 14h - 15th, 2012

Background	and	Recent	Advancements
Main References:
• Wang et al., Exp. Fluids 33 (2002) 587-593. Low pressure (2-8 bar), PIV + Digital-

Image Processing. Main results: drop size and velocity distribution at 1 m distance 
from the orifice. Other: breakup length.

• Paulsen Husted et al., Fire Saf. J. 44 (2009) 1030-1045. High pressure (100 bar), 
hollow- and full-cone nozzles, PIV and PDA. Main results: comparison of these 
techniques, drop size and axial velocity in the initial region of the spray.

• Santangelo, Exp. Therm. Fluid Sci. 34 (2010) 1353-1366. High pressure (60-80 
bar), full-cone nozzle, Malvern Spraytec, PIV, mechanical patternator. Main 
results: drop-size and flux distribution at 1 m distance from the orifice, velocity field 
and spray-cone angle in the initial region of the spray. Other: breakup length.

• Santangelo et al., Proc. IMECE2011 6 (2011) 1167-1174. High pressure (80 bar), 
hollow-cone nozzle, Malvern Spraytec, PIV, mechanical patternator. Main results: 
drop-size axial trend from the orifice throughout 1-m distance, initial velocity, 
parametric analysis.

Recent Developments:
• Drop-size axial evolution: potential coalescence and secondary atomization.
• Initial velocity and cone angle for hollow-cone water-mist sprays.
• Parametric analysis comparing different orifices (flow number, outlet diameter).
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Experimental	Setup	for	Spray	Analysis

Sketch of the experimental apparatus: 
a) PIV setup (velocity field and spray-cone angle); 

b) Malvern Spraytec and mechanical patternator (droplet size).
All dimensions are in mm.
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Employed	Nozzles	and	Injectors

CJX series by Bettati Antincendio S.r.l. (pressure-swirl atomizers, hollow-cone sprays), 
here operated at 80 bar (pressure right upstream the injector)

Injector Orifice Diameter 
(mm)

Flow Number 
(lpm bar -0.5)

B070
B250

0.49
1.14

0.1167
0.4167
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Drop‐Size	Experimental	Procedure

• Radial symmetry of the spray is assumed as a simplifying hypothesis. 
• At 5, 10, 25 and 50 cm distance from the injector outlet, the drop-size distribution consists of the crude 

Malvern Spraytec results along a generic diameter.
• At 1 m distance from the injector outlet, a flux-based weighting procedure is employed to reconstruct the 

overall drop-size distribution, thus overtaking the biasing effect due to the mismatch between the 
geometric shape of Malvern Spraytec sampling volume and the spray cross section.

• Volume flux is yielded by patternation tests.
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Equation to reconstruct the volume fraction 
pertaining to the ith drop size over all the j
measurement locations:
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PIV	Analysis:	Parameters	and	Procedure

No seeding has been added: droplets constitute tracking particles themselves.
Only axial and radial velocity components have been considered, because the tangential 
tends to collapse onto this latter within few millimeters downstream the outlet.
LSV (Laser Speckle Velocimetry) has been employed to process images in the highly-
saturated region (axially stretching over about 5 mm from the orifice).
Results upstream the breakup location are to be considered as unreliable (continuum flow).
The velocity field has been reconstructed over a set of 300 images. 

• The PIV apparatus features a 30 mJ
pulsed-Nd:YAG laser (by Dantec
Dynamics), a thermo-electrically cooled 
CCD camera (14 bit, 4 Mpixels) and a 
post-processing software (by LaVision).

• Measurements have been taken at 4 Hz 
frequency, with a time interval of 5 s 
between two exposures of the same pair.
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PIV	Results:	Velocity	Maps	and	Profiles

Map of velocity magnitude for
a) B070 (Vmax ≈ 101 m s-1) and 
b) B250 (Vmax ≈ 85 m s-1) injectors

Radial velocity profiles in the region 
a) close to the orifice (10-20 mm) 

and 
b) far from the orifice (30-40 mm).
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PIV	Results:	Evaluation	of	Spray‐Cone	Angle
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The cone boundary is identified by radial locations (x)
where velocity magnitude turns into 0



12th International Water Mist Conference – Barcelona, Spain – November 14h - 15th, 2012

Drop‐Size	Experimental	Results

• Coalescence phenomena appear to govern droplet size after secondary atomization has 
occurred (about 15 cm downstream the outlet).

• The same qualitative drop-size trend is shown by both the injectors, even though larger 
diameters are generated by the bigger orifice.

• An attempt to extrapolate SMD at the supposed breakup location (4 mm downstream the 
outlet) has been made through a simple 3rd-degree polynomial curve.
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Physical	Modeling	for	Initial	Velocity

The classic inviscid model developed by Giffen and Muraszew (Atomization of 
Liquid Fuels, Chapman & Hall, London, UK, 1953) for pressure-swirl atomizers 
inspired some theoretical analysis to predict velocity and spray-cone angle.
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Injector
Theoretical
half cone 
angle, th (°)

Experimental
half cone 
angle, th (°)

Cone-angle 
relative error

Theoretical
velocity, Vth
(m s-1)

Experimental
velocity, V
(m s-1)

Velocity 
relative error

B070 16.66 26.90 38.07% 108.63 101.40 7.13%
B250 30.61 35.40 13.52% 90.23 85.39 5.66%
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Physical	Modeling	for	Droplet	Size
The very first physical parameter to be investigated is sheet thickness,
which is  
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Rizk and Lefebvre (J. Propul. Power 1 (1985) 193-199) found that initial SMD is proportional 
to t0.39 in pressure-swirl atomizers: this relation was mainly connected to fuel sprays, but 
results to be correct for water-mist too.

Lefebvre (Atom. Spray Technol. 3 (1987) 37-51) discusses the characteristic diameter as 
constituted by two contributions:
• First stage: disruptive hydro- and aerodynamic forces, f((Re·We0.5)-c);
• Second stage: velocity gradients, f(We-g).
Wang and Lefebvre (J. Propul. Power 3 (1987) 11-18) provide an expression for SMD under 
certain ranges for dynamic viscosity and surface tension:
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Injector
Theoretical

sheet thickness, 
t (mm)

Extrapolated 
SMD (mm) SMD/t0.39 Modeled SMD SMD relative 

error

B070 149.78 27.64 3.92 28.14 1.80%
B250 244.77 35.83 4.19 37.34 4.21%
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References:
•Experimental and numerical studies on flow-flame interaction of water-mist 
sprays in simple heptane pool fires (P.E. Santangelo et al., Proc. 14th Int. Heat 
Transf. Conf. 5 (2010) 571-580);

•Experimental tests of water-mist discharge against high-rise-storage fires, 
within a highly equipped large-scale facility (P.E. Santangelo and P. Tartarini, 
Appl. Therm. Eng. 45-46 (2012) 99-107; P.E. Santangelo and P. Tartarini, 
Proc. 12th Int. Conf. Multiph. Flow Ind. Plants (2011) paper V.4).

Objectives:
Challenging water-mist fire-suppression performance in a large-scale and 

highly hazardous scenario;
Comparing suppression capabilities with and without a commercially 

available additive.

Water‐mist	tests	in	a	High‐Hazard	Storage	facility	
(UNI	EN	12845);	additive	F‐500	by	Hazard	Control	
Technologies	Inc.

Task	2	– Main	References	and	Motivation
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• The fire should be spatially controlled, preventing the surrounding 
materials (i.e., the target shelf) from being burnt;

• The higher temperatures within the domain should be limited under 
conservative values to preserve the structural configuration of the 
building (i.e., the test chamber);

• The temperatures at eye level should be kept as low as possible to allow 
the best conditions for fire fighters;

• The fire spread within the involved commodities (i.e.: in the main shelves) 
should be vertically and horizontally limited as much as possible to 
optimize the rate of damages.

Parameters	of	Suppression	Performance
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•Test chamber: Prefabricated iron box, base area ~ 83 m2 (12 m × 6.94 m × 8 m);
•Storage structure: Iron beams, 3 shelves (5.65 m × 0.8 m × 6.89 m each), 8 
storage levels;

•Nozzle: CJX 1140 B1SG by Bettati Antincendio S.r.l., 7 injectors (total flow number 
= 1.4 l min-1 bar-0.5); 9 nozzles located at the ceiling above the ignition-involved 
shelves;

•Electric pump: Maximum static head = 130 bar, operative pressure at the nozzle 
inlet = 100 bar. 

Technical sketch of the experimental facility: a) view from side; b) view from above

Experimental	Setup
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Combustible	Materials

Commodities (EUR Standard Plastic Commodities): 
• wooden pallets, 
• cardboard boxes, 
• plastic glasses.

Wooden	pallets Cardboard	boxes Polystyrene	glasses
Main shelves 64 256 30	720
Target shelf 32 128 15	360
Total amount 96 384 46	080
Total mass (kg) 2	400 691.20 138.24

Material Lower	Heat	Value	(MJ	kg‐1),	H Combustion	Efficacy,	 Limiting	Coefficient,	
Wood 19 0.8 1
Cardboard 17 0.8 1
Polystyrene 40 1 1
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Experimental	Facility	– Photos
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•Thermocouples: K type, diameter = 0.5 mm. 5 (TC1-TC5) placed between the 
ceiling and the nozzle height (hot gas temperature), 1 (TC6) placed at the flame axis 
3.6 m distant from ignition source, 1 (TC7) placed at the target shelf, 1 (TC8) placed 
at eye-level height in between the shelves;

•Thermal-response wires: Activation temperature = 88 °C, all wires placed 
along the ignition-involved shelves at 1.1, 1.9 and 6.5 m from the floor;

•Ignition source: Heptane pool fire (120 ml), placed below the ignition-involved 
shelves;

•Discharge: 30 min; Test 1 - sole water, Test 2 - water/F-500 (2% volumetric 
concentration); if temperature at the ceiling = 350 °C, the test is interrupted 
(manual extinction for building preservation; failed suppression);

•Water-mist activation: both thermal-response-wire and temperature based.
Report From the Sensors Discharge-Activation Time (s)

Alarm from 3 thermal-response wires within 60 s after ignition 60

Alarm from 2 thermal-response wires within 90 s after ignition 90

No/1 alarm from thermal-response wires within 120 s after ignition 120

Ceiling temperature = 300 °C Immediate

Experimental	Measurements	and	Procedure
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Thermocouple	Assembly

Locations
• Ceiling Height: 5 thermocouples (TC1-5) to measure hot-gas temperature;
• Main Shelves: 1 thermocouple (TC6) at the axis of the heptane pool fire to 

measure flame temperature;
• Target Shelf: 1 thermocouple (TC7) to measure the potential involvement of the 

target shelf;
• Eye Level: 1 thermocouple (TC8) to measure the environmental conditions for fire 

fighters.
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TC1 - Ceiling

TC6 - Flame axisTC5 - CeilingTC4 - Ceiling

TC3 - CeilingTC2 - Ceiling

Temperature	Profiles	(TC1‐TC6)
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TC7 - Target shelf TC8 - Eye-level height, hallway

TC1-TC6 after ignition (sole-water flow) TC1-TC6 after ignition (water/F500 flow)

Temperature	Profiles	(TC7,	TC8	and	details)
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Additional	Outcomes

Mass‐loss	evaluation:
• No mass-loss actual measurement was carried out, since the main scope was to evaluate 

thermal control and because the size of the involved experiments;
• Following a post-fire damage evaluation, 4 pallets (base) and 6 storage levels (height) in the 

main shelves were involved in the fire spread for both the tests;
• As a conservative assumption, 25% and 37.5% of the combustible materials were burnt in 

Test 1 (sole water) and Test 2 (water/F-500) respectively;
• As an additional assumption, burning in Test 1 is assumed to stop at the end of emergency 

operations (0.16 tDischarge), while burning in Test 2 is assumed to stop at the end of the 
discharge;

• Considering a free-burn time of 120 s (as in both tests), the average burning rate in Test 
1 is 3.15 higher than in Test 2.

How	does	the	presence	of	an	additive	affect	drop	size?
• Relative viscosity (to water) appears to be the main governing parameter in determining 

droplet size in water/surfactants (retardants) flows;
• According to F-500 declared components, its relative viscosity seems to be quite high (1.6-

7.7);
• This case seems to be similar to agricultural water/drift retardant sprays;
• Drop size is assumed to increase by 35% (Dv50) with respect to the sole-water flow.
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Conclusions
• An experimental investigation was conducted to investigate velocity field,

spray-cone angle drop-size axial evolution in water-mist sprays generated by two hollow-cone
nozzles, employing laser-based diagnostics.

• The velocity field shows the same qualitative characteristics for both the injectors, while the 
cone angle is wider for larger orifices.

• Drop-size trends show that secondary atomization is the governing phenomenon until a 
minimum is reached; then, coalescence tends to increase droplet size.

• Drop-size trends are qualitatively very similar, but larger orifices tend to generate bigger 
droplet size on an average basis.

• Some predictive relations for pressure-swirl atomizers have been successfully validated for the 
water-mist case, as a result of non-viscous modeling.

• A water-mist system operating at high pressure was challenged in suppressing a fire within a 
high-hazard scenario; sole-water and water/additive flow were employed;

• Thermal transients was considered as the main parameter to determine suppression 
performance, together with post-fire damage evaluation and a temperature safety threshold;

• The sole water has been proved to provide ineffective action, even enhancing the temperature 
rise (turbulent effect on fire); on the other hand, the water/F500 flow yielded to successful 
thermal control and fire suppression;

• Fire spread was mainly vertical over both the tests (reduced temperature rise at the target 
shelf); eye-level temperature was lower than 80 °C over both the tests, thus allowing safe fire-
fighters’ operations.
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Future	Work

 Coupled velocity and drop-size measurements are to be pursued, employing 
shadowgraphy as one of the possible techniques.

 A more accurate patternation system should be designed to collect the smaller floating 
particles, thus implying an indirect evaluation of the evaporated share of the whole 
spray.

 Statistic analyses on turbulence can be conducted on PIV images, thus evaluating air 
entrainment within the spray.

Modeling air entrainment in hollow-cone sprays still needs to be accomplished.

 Additional full-scale tests under downsized configurations should be performed to 
carry out a scaling approach on the involved physical phenomena;

 Numerical simulations of the fire scenario through CFD codes should be attempted to 
evaluate their predictability in terms of temperature profile and fire spread. 
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Thanks for your kind attention.

Questions?

Prof. Ing. Paolo Tartarini
Dipartimento di Ingegneria «Enzo Ferrari»
Università degli Studi di Modena e Reggio Emilia
Via Vignolese 905/b
41125 Modena (Italy)
Tel.: +39 059 205 6146
Fax: +39 059 205 6126
E-mail: paolo.tartarini@unimore.it


