Simulation of Engine Room Fire and Water Mist

Einar Kolstad and Bjarne P. Husted Stord/Haugesund University college

Fire on MS Nordlys

15th September 2011 a fire started in the engine room of the cruise ship, outside Ålesund, at the west coast of Norway.

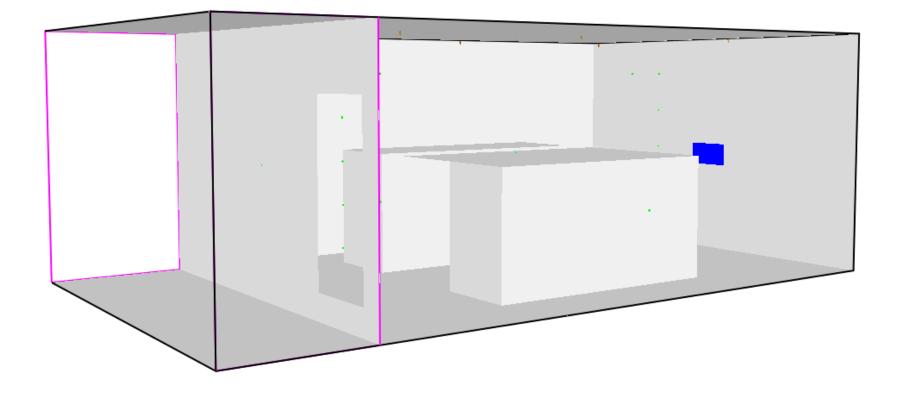
More about the accident.

- Fuel leak from a hose to the fuel pump caught fire, when it came in contact with a hot surface [1].
- No automatic extinguishing was activated.
- Carbon dioxide based system was present, but never activated.
- Two people was killed in the accident.
- The Norwegian Maritime Directorate wish to find out if water mist could have change the tragic outcome of the fire.

Picture of the rebuilt engine room at MS Nordlys

Use of Data Modeling

- We will try to set up and simulate the fire of MS Nordlys in a data model.
- We do not have data from the fire.
- In order to calibrate the data model, we used United State Coast Guard (USCG) tests from 1999.


Case Study - USCG.

- Full-scale testing on engine room of ships in the late 90's.
- Report "Full-scale testing of water mist resuppression system for small machinery spaces and spaces with combustible boundaries" [3].

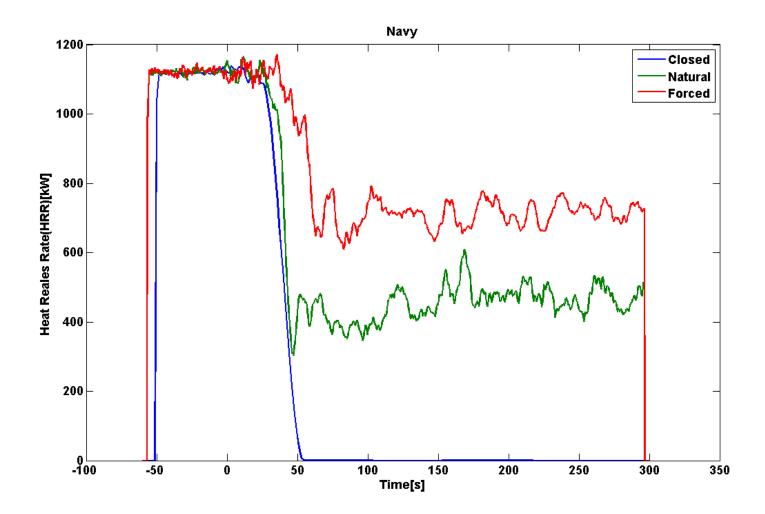
FDS-Fire Dynamic Simulator

- CFD *Computing Fluid Dynamics* program, developed by NIST [2].
- Widely used in fire simulation world wide.
- Conservation of mass, momentum and energy are solved by partial differential equation
- Difficult to predict extinguishing with water mist.
- Simulation is time consuming.

Simulation Setup

Ventilation scenarios

- **Closed**: Neither the door or the fan is ventilating
- Natural: The door is ventilating, not the fan.
- Forced: Both the door and the fan is ventilating.


Result from USCG - Tests

System		Navy	Grinnell	Fogtec	Chemetron	Fike
Number of Nozzles		6	6	6	15	6
Operating Pressure (bar)		70	13	100	12	21
Flow Rate (Lpm)		68	75	22	70	48
Fire Scenario	Ventilation		Extinguishment Times (sec)			
1.0 MW Spray	Closed	15	26	21	27	21
1.0 MW Spray	Natural	15	40	32	43	35
1.0 MW Spray	Forced	17	55	76	357	133

System Capabilities Test Results

In our simulation we used Navy-nozzles, an 1.0 MW fire and all three ventilation scenarios.

The first simulation

Problem

- FDS did not predict extinguishing of scenario natural and forced.
- Smoke view showed that the flame moved from the heptane outlet area to the ventilation area.
- This effect was not described in USCG test. Is it possible to overcome this?

Parameter Study in FDS

- Particle per Second pps
- Auto Ignition Temperature AIT
- Critical Flame Temperature CFT

Particle Per Second - pps

- What is pps?
 - This is how many droplets FDS use in its calculation.
- Lagrangian particle, is a method to calculate the particle movement.
- Why more particles?
- Simulation done by changing the "closedventilation scenario"

Auto Ignition Temperature – AIT

• What is AIT?

The temperature where the mixture of air and combustible gas will ignite due to heating.

 Preset by FDS to 0 degree, then it is not necessary to set an ignition source. • How to calculate [4]

$$\Delta T_{crit} = T_0 - T_{a.cr} \approx \frac{RT_{a,cr}^2}{E_A}$$

 ΔT_{crit} = Critical temperature rise[K]

$$T_0 =$$
Start temperature[K]

 $T_{a.cr}$ = Auto ingnition temperature[K]

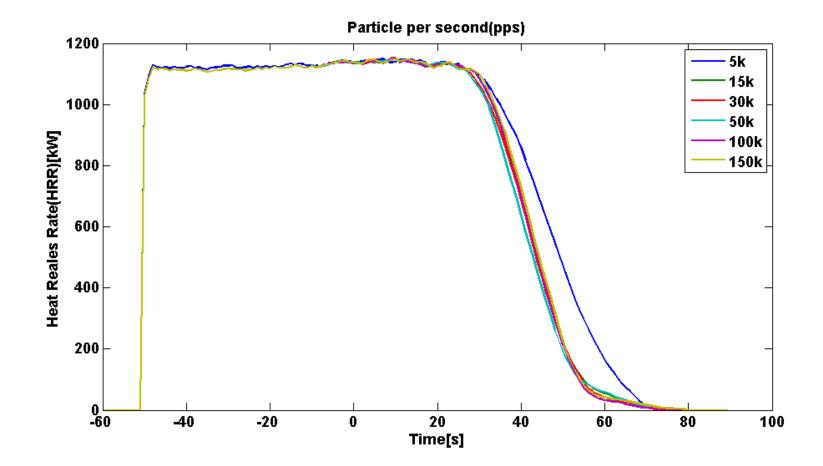
 $R = \text{Gas constant}[J/K \cdot \text{mol}]$

 $E_A = \text{Activation energy}[J/\text{mole}]$

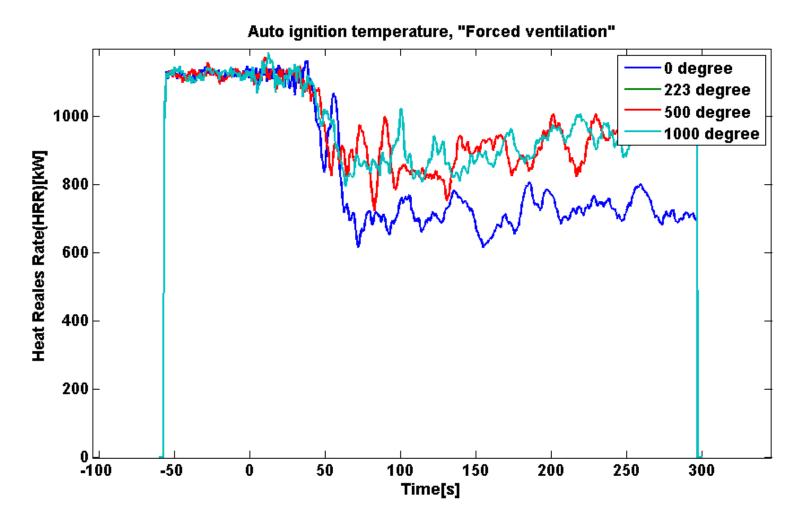
• This is one method, but is not the best.

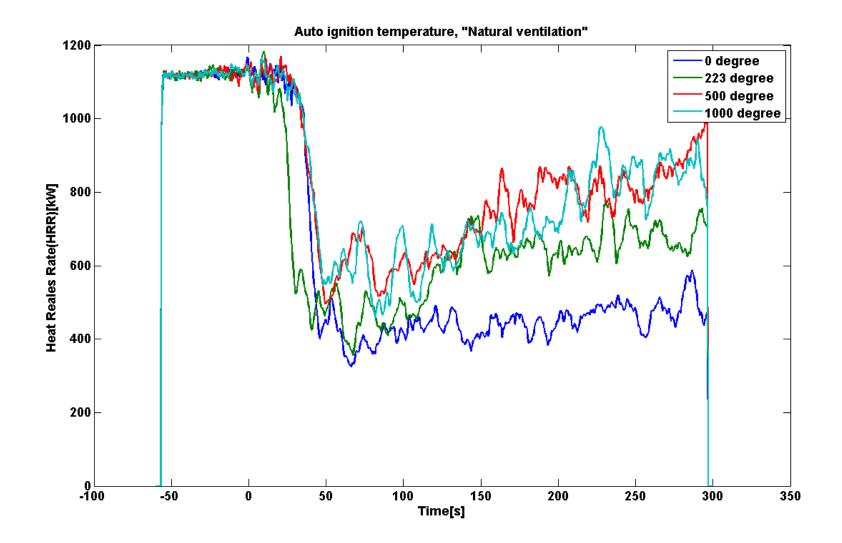
Critical Flame Temperature – CFT

- What is CFT?
 - Critical Flame Temperature is the highest temperature where the heat loss is larger than the heat production.
 - This is the same as adiabatic flame temperature at the lower flammability limit.
 - In FDS it is used as extinction criteria, Preset value is about 1300 degree.
 - The simulations in this work is done by setting the AIT to 500 degree.

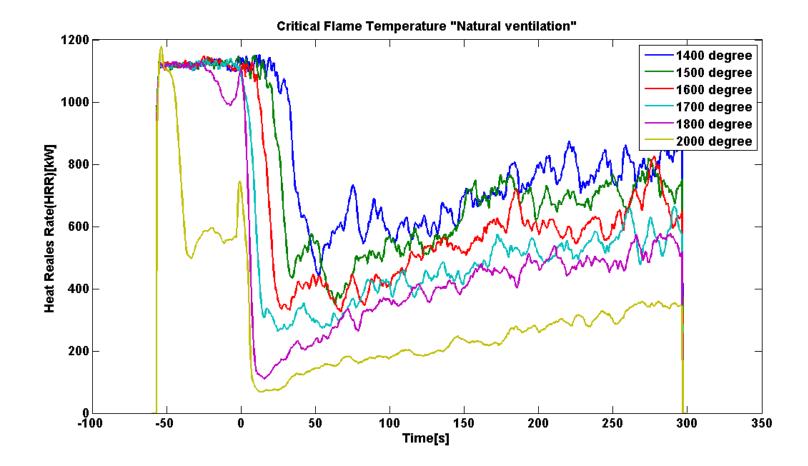

How to calculate[4]:

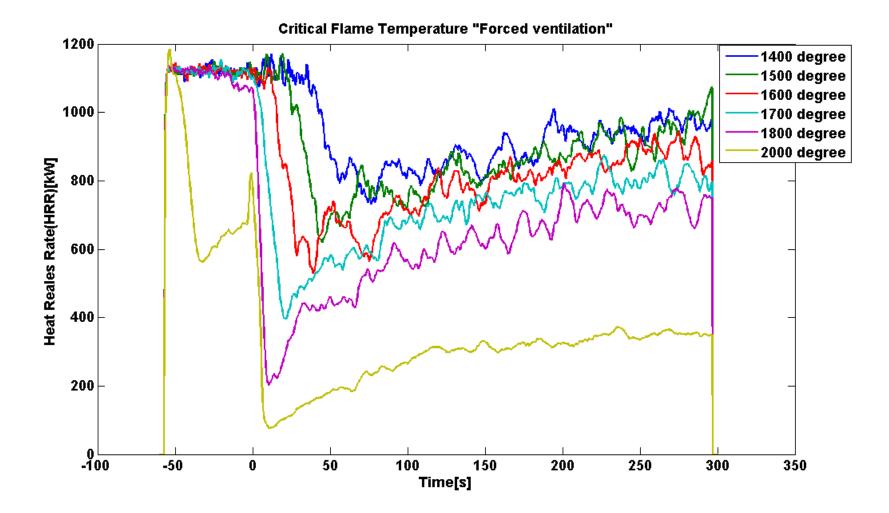
$$T_F = T_0 + \frac{\Delta H_{c,air}}{c_p}$$


 $T_F = \text{Adiabatic flam temperature [K]}$ $T_0 = \text{Ambient temperature [K]}$ $\Delta H_{c,air} = \text{Heat of combustion for species and air [kJ/mol]}$ $c_p = \text{Thermal heat capacity at constant pressure [kJ/(mol \cdot K)]}$


This gives the value of about 1600K for n-Heptane

Result pps




Result AIT

Result CFT

What Does This Tell Us?

- Increasing the number of particles give a better prediction but it is not necessary to use tens of thousand. 15k seems to be enough.
- It was expected that with high AIT the flame movement to the ventilation area would disappear. This did not happen, and the gas mixture reignite even for AIT at 1000 degrees.
- Critical Flame Temperature improved the prediction but the fire still moved from the outlet to the ventilation area.
- This result point in the direction of flame propagation and not re-ignition.

Future Work

- Simulate the MS Nordlys accident as a closed ventilated scenario.
- It is possible to work with the source of FDS.
- Try to make another case study of a smaller volume.

References

- 1. The Accident Investigation Board Norway "Foreløpig rapport om undersøkelse i forbindelse med brann ombord i hurtigruteskipet Nordlys-LHCV- under innseiling til Ålesund 15. september 2011" Lillestrøm 2013.
- 2. K. McGrattan, S. Hostikka, J. Floyd *"Fire Dynamics simulator(Version 6) User's Guide, FDS Version 6.",* Washington 2012.
- 3. G. Back, B. Lattimer, C. Beyler, P. DiNenno, R. Hansen, "Full-scale testing of water mist re suppression system for small machinery spaces and spaces with combustible boundaries" 1999 Washington
- 4. D. Drysdale, "Fire Dynamics", third edition, 2011 Edinburg
- 5. E.A. Kolstad, B.P. Husted. *"Effect of water mist and ventilation on engine room fire."* Interflam 2013, London 2013.