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Introduction

* Goal: creating a physically correct model of a high pressure water
mist spray with Fire Dynamics Simulator

* Physically correct:
* Drop size profile

* Drop velocity profile
* Mist flux profile

* Air entrainment

* Water distribution
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FDS model parameters for nozzles

&DEVC XYz=0.0, 0.0, 2.5
QUANTITY='TIME'
SETPOINT=0.0
PROP ID=‘MY NOZZLE' /

&PROP ID=‘MY NOZZLE'
OFFSET=0.05
PARTICLES PER SECOND=5000
PART ID='WATER DROPLETS'
OPERATING PRESSURE= 70.0000
K _FACTOR= 0.35
DROPLET VELOCITY=110.0
SPRAY ANGLE=0.0, 10.0 /

&SPEC ID='WATER VAPOR' /

&PART ID='WATER DROPLETS'
SPEC_ID='WATER VAPOR'
DIAMETER=80.

GAMMA D=2.4 /

Smim J
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OFFSET

= No model for atomization 0
in FDS

» Droplets are inserted in
the simulation at a

distance (offset) from 5
orifice where atomization =
IS complete c

= OFFSET=0 is possible -
but may sometimes be 10

numerically awkward
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VELOCITY

» The exit velocity of a liquid jet from the discharge orifice may be
estimated from Bernoulli’s law as

yo,

= Pressure in Pascals (1 bar = 10° Pa)
= For water, p=1000 kg/m3

= Discharge coefficient C depends on nozzle geometry and liquid
Reynolds number (0.6 — 1)

= Alternatively it is possible to define orifice diameter and flow rate
from which the velocity is computed by FDS (assuming C=1)
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DIAMETER

= Atomization leads to a spectrum of drop sizes

» FDS describes the drop size spectrum as a combination of log-
normal and Rosin-Rammler distributions

= The diameter given as input is Dy, 4 5, the Volume Median Diameter
of the distribution

= FDS6 offers the user an option to input an arbitrary size distribution
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F(d) is the fraction of liquid volume in droplets smaller than d
f(d) is the fraction of droplets smaller than d
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DIAMETER

= Example: Dy, ,5=100 pm, y=2.4
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How to obtain the numbers?

Method 2

= Measurements far
away from discharge

Method 1

» Measurements close
to discharge orifice

(~0.1m) orifice (~1m)
= Diameter = Diameter
= Velocity = Velocity
= Flux » Flux

= Use diameter as input
at offset distance

= Verify results at
measuring distance

= Use as inputs at
measurement plane
(offset distance)

= Problems:

= Dense spray = Problem:
. Incomplgte = Velocity (momentum
atomization conservation)

= Verification
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Nozzle characterization with modified NFPA750

Extra point on
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Digital Imaging (Shadowgraphy)

I.l Camera
CAVILUX .
back lighting resolution 2009: 2048 x 2048

measurement
/ plane (JAI),

2010: 1600 x 1200

(Lynx)
Camera optics
! objective Nikon 200 mm macro +
. 2x converter (=400 mm)
9 Laser Cavilux Smart
type Diode laser

max. power | 560 W /2.8 mJ per
pulse

wavelength 690 nm

= Measurement volume 12mm x 12mm x 3 mm
= Smallest detectable drop diameter about 10 pm
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Digital Imaging (Shadowgraphy)

Velocity

—— Expt

Velocity (m/s)
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= Diameter and concentration directly from pattern recognition
= Velocity by particle tracking from two images taken with At=5us
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High-pressure micronozzles

» Three high-pressure micronozzles characterized experimentally and
modelled with FDS (svn 10155)

&DEVC XYZ=0.0, 0.0, 2.5

A B C QUANTITY='TIME'
SETPOINT=0.0
Type Full-cone | Full-cone | Full-cone PROP ID='MY NOZZLE' /
) - 1/2
K-factor (I/min/bart/?) 0.2 0.43 0.77 SPROP ID='MY NOZZLE'

SPEC_ID='WATER VAPOR'
DIAMETER=80.
GAMMA D=2.4 /

Pressure (bar) ? ? ? OFFSET=0.05
PARTICLES PER SECOND=5000
Velocity (m/s) 2 2 2 PART_ID='WATER DROPLETS'
OPERATING PRESSURE= 70.0000
Cone angle (deg) ? ? ? K_FACTOR= 0.35
DROPLET VELOCITY=110.0
D, 05 (LM) ? ? ? SPRAY_ANGLE=0.0, 10.0 /
Y ? ? ? &SPEC ID='WATER VAPOR' /
? ? ?
OﬁSEt (m) ) &PART ID='WATER DROPLETS'
? ? ?

Particles per second
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Model parameters for micronozzles

A B C
Type Full-cone | Full-cone | Full-cone
K-factor (I/min/bar'/2) 0.2 0.43 0.77
Pressure (bar) 70 70 70
Velocity (m/s) 112 112 112
Cone angle (deq) 10 12 14
D, 05 (LM) 84 79 116
Y 2.9 2.26 1.98
Offset (m) 0.1
Particles per second 200000

User decision
From Bernoulli’s law (C=0.95)

From photographs
From experimental GRV

From experimental GRV

} Trial & error
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Other modeling considerations

= Discretization interval (grid resolution)
= Particle CFL parameter
= Turbulence model
» Deardorff (FDS 6 default)
= Vreman [ o
= Constant Smagorinsky (FDS 5 default)
= Dynamic Smagorinsky
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Micronozzles: velocity

Velocity (m/s)

40
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Ax=0.02m, Particle CFL=1, Dynamic Smagorinsky
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Micronozzles: mean diameter

Ax=0.02m, Particle CFL=1, Dynamic Smagorinsky

® CExp.
€ BExp. |
B A Exp.
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Micronozzles: mist flux

Ax=0.02m, Particle CFL=1, Dynamic Smagorinsky

@® CExp. [
4 BExp.
B A Exp.
— C Sim.

Radial position (cm)
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Grid sensitivity
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FDS: constructing a multi-orifice spray head

* In FDS, a multi-orifice spray head is constructed analogously to a
real spray head: by placing several micronozzles to the same
physical location but with different orientations

&DEVC XYZ=0.0,0.0,5.000 PROP_ID="NZLE' ORIENTATION= 0.7071, 0.0000, -0.7071 QUANTITY="TIME' SETPOINT=0.0 ID="45_1"/
&DEVC XYZ=0.0,0.0,5.000 PROP_ID="NZLE' ORIENTATION= 0.5000, 0.5000, -0.7071 QUANTITY="TIME' SETPOINT=0.0 ID="45_2"/
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Multi-orifice SPH’s

= Spray heads constructed of micronozzles A, B, and C

SHI SH2 SH3 SH4 SHS5
Center nozzle A C B B B
Perimeter nozzle A B A B B
Number of perimeter nozzles 6 6 8 3 8
Perimeter angle () 60 60 45 45 30
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Air entrainment

* Probing the aerodynamic spray-gas interaction in near-range
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Air entrainment

= Axial gas velocities behind the spray heads

(a) 3 (b)
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Air entrainment

= Particle trajectories and average gas velocity for SH1

(b)
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Full-scale water distribution: effect of grid size

= SH3 from 5 m height

aaaaa

AX=2.5 cm AX=20 cm
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The computational cost

= Domain size: 7.5m x 7.5m x 5m

Ax 2.5cm Ax 20 cm
18 meshes 1 mesh
* 1 million cells per mesh « 32400 cells total
« 18 million cells total « 2.1h of CPU time for 30 s of
real time

« 5363h of CPU time (298 h of wall
clock time) for 30 s of real time
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Conclusions

= Three high-pressure water mist micronozzles have been
characterized according to modified NFPA 750 methodology

= Physically accurate FDS models for the micronozzles have been
constructed

= FDS models for multi-orifice spray heads can be constructed
based on micronozzle data

= Predicting full-scale spray dynamics accurately requires
considerable computational resources
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