Comparison of experiments and numerical simulations of a high pressure water mist curtain as a radiation shield

<u>Bjarne P. Husted</u> Jasper Ho Daniel Martin

The Fire Safety Engineering Group at Lund University in Sweden

- 7 members of research staff and 17 PhD-students (6 internal and 11 industrial at the moment)
- More than 25 years of experience
 - One of the firsts universities to start FSE education in Europe

BSc. FSE	MSc. Risk Management	International Master of Science in FSE
 Responsible for education ~50 students/year Swedish program 	 Course participation 20-30 students/year Swedish 	 Erasmus mundus University of Edinburgh and Ghent University ~20 students/year International background English

Acknowledgement

- This presentation is largely build on two M.Sc. Thesis done at Lund University by Jasper Ho and by Daniel Martin (my co-authors)
- Ho, J. (2015). Effect of water mist system on a controlled fire. (M.Sc. thesis M.Sc. thesis), Lund University, Lund. (Report 5498)
- Martin, D. A. (2015). The Use of a Water Mist Curtain as a Radiation Shield. (M.Sc. thesis M.Sc. thesis), Lund University, Lund. (Report 5497)
- Danfoss and Danfoss Semco for pump and pipework

Contents

- Objectives of the research
- Background work
- **Theoretical calculations**
- Experimental setup
- Numerical
- Results
- Conclusion

Potential uses of a water mist curtain shield

- Protect operational control rooms
- Protecting high value targets from radiation exposure
- Prevent fire spread; i.e. compartmentation

Objectives of the research

- Measure the radiation attenuation through a high pressure low flow rate single nozzle water mist curtain
- Find the different radiation attenuation levels based on:
 - The vertical position within the water mist column
 - Vertical plane angle of the heat flux gauge
 - Radiation source

Previous experimental research

- Nozzle sizes tested:
 - Firefighting nozzles, sprinkler heads, and water mist heads
- Pressures and nozzle flow rate:
 - 0.076 10 bars
 - 0.12 4.7 L/min (mist), 360 1363 L/min (fire nozzle)
- Sources of radiation:
 - Gas radiant panel, liquid pool fire, wood crib fire, Fourier Spectrometer
- D_v0.5 sizes:
 - Varied by location in the spray column and the nozzle (24 550+ μm)
- 10-70% attenuation

Theoretical Mie scattering

- Simplified method for solving the complex radiation transfer equation
- Physics approach to solving the scattering and extinction of an electromagnetic wave hitting a spherical particle
- MiePlot (a program by Phillip Laven)
 - Single source point, scattering analysis of a single droplet
 - Input: wavelength, droplet size/distribution, refractive indices
 - Outputs: several options but Intensity vs Scattering Angle of greatest interest

Theoretical Mie scattering for a single droplet

Intensity and Scattering of Various Sized Droplets

Attenuation calculation

 $Attenuation = 1 - \frac{Measured\ radiation\ with\ water\ mist}{Measured\ radiation\ without\ water\ mist}$

Experimental setup

- Danfoss Water Mist System
 - Power Pack PPH 6.3 with a piston pump (4 L/min)
 - Single nozzle: 1910 Hollow Cone Nozzle (0.42 L/min)
 - Operating pressure: 100 Bars
 - Single fluid spray

https://stateofgreen.com/en/profiles/danfoss/solutions/fire-suppression-with-water-mist-inmicrobiological-laboratory

Experimental setup

Experimental setup

3 burner propane radiant panel: 39 x 47 cm

Results (radiant panel)

Uncertainties affecting the experimental results

- Misalignment between the heat source, centerline of the spray, and the heat flux gauge
- Radiation levels measured fall below the known calibration curve of the heat flux gauge
- Equipment reading uncertainties
- Water mist/heat source interaction

Malvern to verify previous experiments with Phase Doppler Anemometry (PDA)

Previous simulation (Husted 2007) FDS 4.07

Simulation setup (FDS 6.2 and 6.3)

LUND UNIVERSITY

Time: 11.61

Modelling of spray

Velocity profile

Velocity profile (Best suited concept)

Results

Attenuation of radiation

UNIVERSITY

Sensitivity of simulation results

- Version of FDS
- Parameter for MIE scattering calculation

	Number of Mie angles	Attenuation
Experiment (700 mm)	-	23%
FDS 6.2.0	15	20%
FDS 6.3.0	15	20%
FDS 6.2.0	30	12%
FDS 6.3.0	30	11%

Future work

- Integration of multiple nozzles
- Larger diffusion flame to increase separation distances
- Various nozzle orientations
- Incorporating various nozzle types

LUND UNIVERSITY