

The Use of a Water Mist Curtain as a Radiation Shield

DANIEL A. MARTIN

MASTER'S THESIS RESEARCH

- Potential uses of a water mist curtain shield
- Objectives of the research
- Previous academic research
- Background work
- Experimental setup
- Predicted results

Potential uses of a water mist Lund curtain shield

- Protect operational control rooms
 - Oil rigs
 - Marine vessels, etc
- Protecting high value targets from radiation exposure
- Prevent fire spread; i.e. compartmentation

- Measure the radiation attenuation through a single nozzle water mist curtain
- Find the different radiation attenuation levels based on:
 - The vertical position within the water mist column
 - Radiation source
 - Vertical plane angle of the heat flux gauge

LUND Previous Academic Research

- Nozzle sizes tested:
 - Firefighting nozzles, sprinkler heads, and water mist heads (full/hollow spray)
- Pressures and nozzle flow rate:
 - 0.076 10 bars
 - 0.12 4.7 L/min (mist), 95 360 gal/min (fire nozzle)
- Sources of radiation:
 - Gas radiant panel, liquid pool fire, wood crib fire, Fourier Spectrometer
- $D_v 0.5$ sizes:
 - Varied by location in the spray column and the nozzle (24 550+ μm)

[Ref. 1-7]

Lund Background work

- Continuation of the PhD work conducted by Prof. Bjarne Husted
 - Experimental and CFD results on high pressure water mist systems comparing hollow and full cone nozzles:
 - Droplet sizes in various region of the mist column
 - Droplet velocities
 - Volumetric density

[Ref. 6]

Lund Experimental Setup

- Danfoss Water Mist System
 - Power Pack PPH 6.3 with a piston pump
 - Single nozzle: 1910 Hollow Cone Nozzle (0.42 L/min)
 - Operating pressure: 100 Bars
 - Single fluid spray
 - $D_{v}0.5$'s = 28-35, 40, 48 µm

[Ref. 6]

Lund Experimental Setup

3 burner propane radiant panel: 39 x 47 cm

Lund Experimental Setup

LUND Predicted Results

- From previous studies, attenuation ranges from 11 55%
- Predicted attenuation results from 35 60%
- Very difficult to predict attenuation; results based on the system and application:
 - Pressure, nozzle flow rate, nozzle type, number of nozzles, nozzle orientation, location within the mist column, environmental conditions, etc.

LUND Thank you!

References

- [1] Sunahara, H., Ishihara, T., Matsuyama, K., Sugahara, S., Morita, M. "A study on relation between heat release rate and radiative heat flux of wood crib burning during water discharge" (2010) Journal of Environmental Engineering, 75 (658), pp. 1009-1017.
- [2] Reischl, U. "Water fog stream heat radiation attenuation" (1979) Fire Technology, 15 (4), pp. 262-270.
- [3] Dembele, S., Wen, J.X., Sacadura, J.-F. "Experimental study of water sprays for the attenuation of fire thermal radiation" (2001) Journal of Heat Transfer, 123 (3), pp. 534-543.
- [4] Heselden, A.J.M., A Hinkley, P.L. "Measurements of the transmission of radiation through water sprays" (1965), Fire Technology, 1 (2), pp. 130-137.
- [5] G. Parent, P. Boulet, S. Gauthier, J. Blaise, A. Collin, Experimental investigation of radiation transmission through a water spray, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 97, Issue 1, January 2006, Pages 126-141.
- [6] Husted, B P. "Experimental measurements of water mist systems and implications for modelling in CFD" (2007) PhD Thesis, Lund University, Sweden
- [7] Murrell, J V, Crowhurst, D, Rock, P. "Experimental study of the thermal radiation attenuation of sprays from selected hydraulic nozzles" Halon Options Technical Working Conference 1995, Albuquerque, NM USA. www.nist.gov
- [8] <u>SFPE Handbook of Fire Protection Engineering</u>. *Chapter 14 Water mist fire suppression systems*. National Fire Protection Association, 3rd Edition, 2002.