

A water mist system evaluation based on real scale fire tests

Sullivan LECHENE

IWMA - October 12-13, 2011

Test set-up

Experimenta results

Temperature

Transmissivity

Radiative flux

Conclusion

Context

2 Test set-up

Experimental results

- Temperature
- Transmissivity
- Radiative flux

Onclusion

Context

- Test set-up
- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- As part of rehabilitation of an office building, a project manager planned the installation of a fixed fire fighting system
- Objective is to rise the maximum value of heat potential defined in French regulation
- Project manager also charged CSTB to realize an experimental study with real scale fire tests
- Evaluate the impact of water mist on conditions of people evacuation and firefighters intervention

Test set-up

Experimental results

Temperature

Transmissivity

Radiative flux

Conclusion

Context

2 Test set-up

Experimental results

- Temperature
- Transmissivity
- Radiative flux

Onclusion

Test compartment of CSTB

Context

Test set-up

- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- CSTB building designated for real scale fire test
- Test compartment of 15 m by 15 m with removable ceiling (with a maximum height of 6 m)

Test metrology

Context

Test set-up

- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

Temperature measurements

- Thermocouple tree
- Thermocouple near spraying nozzles
- Radiative flux measurements
- Smoke opacity measurements
 - Agress conditions
- Measurements of spectral radiative flux
 - Radiative shield effect of water mist
- Characterization of water mist system
 - Time of activation of water mist system
 - Operating pressure
- Evaluation of test conditions by video camera

Visibility measurements with opacimeters

Context

Test set-up

- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- Laser diode with an emitting radiation at 635 nm
- Photodiode for the detection
- Distance between source and detector : 1.3 m
- Transmissivity :

 $Tr = \frac{Signal \ during \ test}{Reference \ signal}$

Visibility measurements : data processing

Transmissivity and extinction coefficient

$$eta = -rac{1}{L} \ln Tr$$

• Extinction coefficient and distance of visibility : Jin's relation

$$V = \frac{C}{\beta}$$

• Distance of visibility

- Levels at 5 m and 15 m : validity domain of Jin's equation
- Under and above these limits : extrapolation of Jin's equation

Context

Test set-up

- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

Radiative flux measurements

Context

Test set-up

- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

• Multi-spectral IR camera and spectrometer (LEMTA)

- Simultaneaous display of the same emission area
- IR camera : 4 pictures at the same time with 4 spectral bands (CO₂, H₂O, soot, infrared radiation between 1,5 μ m et 5,5 μ m)

Test set-up

- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

• Office furniture and transfer cases

Metrology plans

Context

Test set-up

Experimenta results

- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- > Thermocouple near spraying nozzle
- Thermocouple shaft above the fire

Opacimeter

- 🖬 Camera
- Test pattern
- Fluxmeter
- Spraying nozzle
- Spectrometer and multi-spectral infrared camera

▶11

Test set-up

Experimental results

Temperature

Transmissivity

Radiative flux

Conclusion

Context

2 Test set-up

Experimental results

- Temperature
- Transmissivity
- Radiative flux

Onclusion

Evolution of temperature

- Context
- Test set-up
- Experimental results
- Temperature
- Transmissivit
- Radiative flux
- Conclusion

Test without water mist

- Thermal stratification
- Highest value : 80°C

Test with water mist

- Thermal stratification before mist activation
- Sudden fall of temperature at mist activation

∢∂⇒13

 Highest value after mist activation : 30°C

Evolution of transmissivity (1/2)

- Context
- Test set-up
- Experimental results
- Temperatur
- Transmissivity
- Radiative flux
- Conclusion

Test without water mist

- Significant fall of transmissivity
- Lowest value : between 5 % and 25 %
- Gradual increase due to the decline of the fire activity

Test with water mist

- Decrease of transmissivity before mist activation (between 40 % and 60 %)
- Sudden fall at mist activation explained by smoke destratification
- Weak increase after mist stop (at few percents)

Evolution of transmissivity (2/2)

- Context
- Test set-up
- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- Decrease of transmissivity at 1.70 m high before mist activation (Tr \approx 50 %)
- Sudden fall of visibility after mist activation
- Test without smoke (40 min) : 20 % < Tr < 30 %
 ⇒ opaque mixing between water droplets, water vapor and smoke

15

Characterization of radiative flux

- Context
- Test set-up
- Experimental results
- Temperature
- Transmissivit
- Radiative flux
- Conclusion

After the fire ignition

- Fire mainly concerns transfer cases
- Then, fire propagates to the office chair

Maximum value : 900°C

Infrared pictures converted to an equivalent temperature of blackbody (ie which radiates at the same power).

Characterization of radiative flux

- Context
- Test set-up
- Experimenta results
- Temperature
- Transmissivit
- Radiative flux
- Conclusion

At time to peak HRR

- Fire has propagated at the chair back
- Fast fire propagation fire
- Maximum value : 1000°C

∢ ⊕ → 16

Characterization of radiative flux

- Context
- Test set-up
- Experiment results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

At water mist activation

- Sudden fall of received radiative flux
- Maximum emission on the hiding area under the office
- Maximum value : 600°C

After mist activation

- Context
- Test set-up
- Experimental results
- Temperature
- Transmissivit
- Radiative flux
- Conclusion

Emission spectrum (in terms of intensity [W.m⁻².sr.cm⁻¹])

- Context
- Test set-up
- Experimen results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- Fine peaks due to emission of combustion gases (CO, CO₂ et H₂O)
- Continuous emission of soot particles
- In the large wave numbers, the level of emission is similar to that of a high temperature flame
- Sudden fall of received signal due to mist activation <--> 18

Test set-up

Experimenta results

Temperature

Transmissivity

Radiative flux

Conclusion

Context

2 Test set-up

Experimental results

- Temperature
- Transmissivity
- Radiative flux

4 Conclusion

- Context
- Test set-up
- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- Sudden fall of temperature due to the effect of water mist
 - Strong absorbed heat due to the strong evaporation of water droplets
 - Direct injection on the fire \Rightarrow HRR decrease
 - Temperature becomes more uniform in the test compartment due to smoke destratification
 - Compartment environment is becoming thermally stratified again when mist is stopped

- Context
- Test set-up
- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- Sudden fall of temperature due to the effect of water mist
 - Strong absorbed heat due to the strong evaporation of water droplets
 - Direct injection on the fire \Rightarrow HRR decrease
 - Temperature becomes more uniform in the test compartment due to smoke destratification
 - Compartment environment is becoming thermally stratified again when mist is stopped
- Decrease of the visibility due to the effect of water mist and slowly rises after mist stop
 - Absorbing and scattering mixing between water droplets, water vapor and smoke
 - Decrease of the visibility without water mist
 - Weakly rise after mist stop

- Context
- Test set-up
- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- Sudden fall of temperature due to the effect of water mist
 - Strong absorbed heat due to the strong evaporation of water droplets
 - Direct injection on the fire \Rightarrow HRR decrease
 - Temperature becomes more uniform in the test compartment due to smoke destratification
 - Compartment environment is becoming thermally stratified again when mist is stopped
- Decrease of the visibility due to the effect of water mist and slowly rises after mist stop
 - Absorbing and scattering mixing between water droplets, water vapor and smoke
 - Decrease of the visibility without water mist
 - Weakly rise after mist stop
- Sudden fall of thermal radiation due to water mist
 - Effect of radiative shield
 - Decrease of thermal radiation production considering the direct spraying of the fire
 - Control of the fire propagation

Perspectives

Context

- Test set-up
- Experimental results
- Temperature
- Transmissivity
- Radiative flux
- Conclusion

- Experimental and numerical research in building configurations (within corridor for example)
- Characterization of fires (several types of fire : pool, wood crib, furniture and impact of ventilation)
- Characterization of smoke (composition and optical properties)
- Interaction fire-spray, smoke-spray with water mist and sprinkler (relative to the water droplet size)
- Transmissivity through a water mist (without smoke) and a sprinkler : visibility analysis

