

The European experts in fire safety

Shielding effects of watermist

www.efectis.nl

15 november 2012

Overview

- Introduction
- Project background
- Design of test method
 - Scope
 - Tenability
- O Test series
 - Physical set-up & instrumentation
 - Watermist characteristics
 - Procedure & programme
- O Preliminary test results
- O Directions for the near and far future

Introduction

Definition of watermist

- NFPA 750 mean droplet diameter < 1 mm
- Practice mean droplet diameter < 0.1 mm

Application

- Suppression
 - 0.1-0.2 kg/m³ to control fire
 - Cooling combustion zone, reduction of % O₂, inhibition of combustion reactions
- Cooling effect on surroundings
 - Air temperature reduction, through rapid heat exchange between water and hot gases
 - Shielding of radiation
 - BUT very little experimental data
 - and NO applicable engineering knowledge

Project philosophy

Solid barriers impair rapid evacuation

- WM shield could be potential alternative
- Set-up inspired by <u>health care</u> setting
 - Easy evacuation of people in beds/ wheelchairs
 - Limited smoke movement
 - In normal situation (no fire), often narrower passage because of fire doors

Long-term opportunities (not within project scope)

- Design freedom, equivalent solutions
- Design of watermist for shielding applications

Project overview

Collaboration between Efectis and Saval

 Saval, member of SK Fire and Safety Group, is a European supplier of gaseous, watermist and sprinkler suppression systems

On going project

- Start up in September
- Tests have been performed in previous 2 weeks
- Today: preliminary results

Design of test method - scope

Investigation of shielding effects only

- For the purpose of <u>life safety</u>
- Does not yet address the formal requirements for a conventional fire resistant barrier
 - Beginning fire vs. fully developed fire
 - Different values for temperature and radiation limits

First exploration of practical use of shielding by watermist

- Application for specific
 - Building occupancy
 - Fire scenario
- Gives focus for design of test method

Design of test method - tenability

Non fatal or durable indefinitely?

• NOTE: no global consensus

O Thermal factors

- Air temperature humid environment!
- Radiation intensity

Toxicological factors

- CO concentration
- Soot concentration
- Increases difficulty in measurements
- NOTE: no global consensus on allowable concentrations

• Visibility!

- Impairs evacuation, not-directly hazardous or lethal
- Orientation should not be impaired

Test series - Set up

- O Corridor (length ca. 8 m, height 2.5 m, width 2.7 m)
- Air velocity, average 0,5 m/s -> representative of draught
 - NOTE: prevents decent of smoke layer
- No suppression of fire by spray cone (remarks)
- n-heptane fire, RHR 300-400 kW
 - RHR Representative of chair or bed on fire (literature)
 - Fire scenario is representative but not worst case scenario!

Test series - Set up

www.efectis.nl

15 november 2012

Test series - Instrumentation

Thermal measurements

- Thermocouples (3 measurement sections)
- Plate thermocouple (representative of skin temperature)
- Total heat flux sensors

Toxicological measurements (indicative)

• Gas sampling with gas meter and soot filter

• Visibility is reviewed by

- Video-recording
- Light beacons

Test series - Watermist characteristics

Test program based on

- Wish for future design optimalisation ->
- Reproducibility of results

• High pressure (> 70 bar)

- Variance in nozzle flow capacity (1 3 L/min.)
 - Influence on mean droplet diameter
- Single and double row
 - Variance in number of nozzles (13 vs. 26 nozzles)
 - Influence on thickness of watermist shield
 - Influence on water content per volume of air

• Low pressure (< 13 bar)

- Small number of nozzles
- Larger nozzle flow capacity (ca. 10 L/min.)
 - Influence on mean droplet diameter

Test no.	LP/ HP	No. Nozzles	Av. nozzle flow [L/min.]	RHR [kW]
1	HP	26	<1.7	300-400
2	HP	26	<1.7	300-400
3	HP	26	<1.7	Ca. 800
4	HP	26	<1.3	300-400
5	HP	13	<3.0	300-400
6	HP	13	<3.0	300-400
7	LP	2	~10	300-400
8	HP	13	<3.0	300-400

Preliminary test results - overview

O Test without watermist

- Max. Air temperature, between 50 and 170 °C (near ceiling)
- Max. total heat flux, 1.5 kW/m² downstream, 3.5 kW/m² upstream

O Thermal aspects (next slides)

Toxicological aspects (indicative)

- No significant results
 - Highly influenced by test set up
- No decent of smoke layer

Visibility reviewed by video recording of tests

- Light beacons were all visible
 - Ca 5m. Visibility from camera
- Fire well visible through WM
 - helps people to evacuate away from the fire

Preliminary test results - reproducibility

Temperature cold side Test 1&2

Preliminary test results - temperature

Significant drop in air temperature

• Also true for test with double RHR

Skin temperature

- Plate thermocouple, including all mechanisms
- Ca. 28 °C < body temperature (37°C)

www.efectis.nl

Preliminary test results - temperature

180 WM type 1 - H=2.4m \bigcirc WM type 1 - H=1.6m 160 WM type 2 - H=2.4m WM type 2 - H=1.6m 140 WM type 3 - H=2.4m WM type 3 - H=1.6m WM type 4 - H=2.4m 120 WM type 4 - H=1.6m [°C] Temperature 80 \bigcirc 60 40 20 0 0 2 3 4 5 6 7 8 Time [min] WM type 1 = HP, 26 nozzles, <1.7 L/min. WM type 3 = HP, 13 nozzles, <3 L/min. WM type 2 = HP, 26 nozzles, <1.3 L/min. WM type 4 = LP, 2 nozzles, ~10 L/min.

Temperature WM variants

High pressure WM

• Different configurations give similar results

Low pressure WM

- Smaller temperature drop
- Visible gaps in shield

Additionally the measurement of:

- Temperatures in the section near the nozzles
- Temperatures upstream, between shield and fire

Preliminary test results - total heat flux

• Measurements performed with total heat flux meter

- Influence of additional mechanisms
 - Condensation heat transfer order of magnitude similar to radiation

• Cooling effect upstream

- Secondary influence on combustion process
- Depends on distance between shield and fire
- Total heat flux below important tenability values

Directions for the future

Near future

- Investigate the different heat flux mechanisms
- Larger range of watermist system configurations

Far future

- Smoke shielding properties
- Large scale testing for equivalence to conventional fire resistant barrier
- Develop empirical design rules

Summary

• First exploration gives:

- Useful experience with the behaviour of a watermist shield
 - Effective reduction of air temperature
 - Visibility
 - Additional cooling effect upstream of shield
- New directions for further research
 - Heat flux mechanisms
 - Toxicological aspects

The shielding effects of watermist present a new design possibility for innovative evacuation design

