

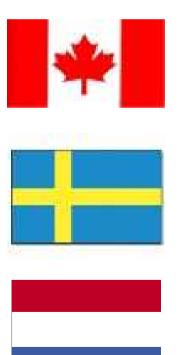
Fire protection in ammunition storage spaces

An evaluation of the water application rate

Bart Boonacker Rogier van der Wal, Johan Lindström, Michael Rahm, John Hiltz

Presentation Overview

- Introduction FiST project
- Aim of the experiments
- Experiment set-up
- Results
- Conclusions/Follow up



FiST – Project

- Cooperation between Ministry of Defense of
 - Canada, Sweden and The Netherlands

New <u>Fire Suppression Technologies on board</u> naval craft (FiST)

Problem definition

It is unclear how **existing** commercial fire fighting systems will react on **battle damage**, and what the **residual capacity** will be.

Objective

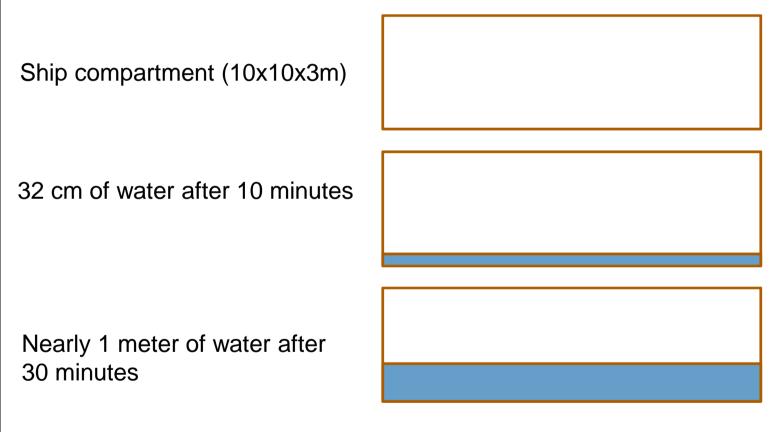
To **develop knowledge** on design and specification of fire suppression technologies specifically for naval vessels that operate in **hostile environments**, i.e. where **damage** from energetic weapons like anti-ship missiles can be expected.

FiST – Project partners

innovation for life

FIRETECH FireTech Engineering SP Technical Research Institute Sweden SP **FOI** FOI - Swedish Defence Research Agency FM FMV - Swedish Defence Materiel Administration Defence R&D Canada (DRDC) * DEFENCE DÉFENSE Netherlands' Ministry of Defence -Defensie Materieel Organisatie Ministerie van Defensie **Defence Materiel Organisation**

TNO - Dutch Organization for Applied Scientific Research


Experimental program (Jan-Feb 2012)

- Evaluate the necessity of the prescribed water discharge density (24-32 l/m² per minute)
 - ANEP-77 Naval Ship Code
 - Class regulations (like DNV)
 - The U.S. Navy's handbook on magazine sprinkling
- High flow rates are a burden on system design
- Rapid flooding decreases ship stability
- Assess the feasibility of reducing flow rate
 - If necessary/advantageous in conjunction with low pressure WMS

How much is 32 litres/m² per minute?

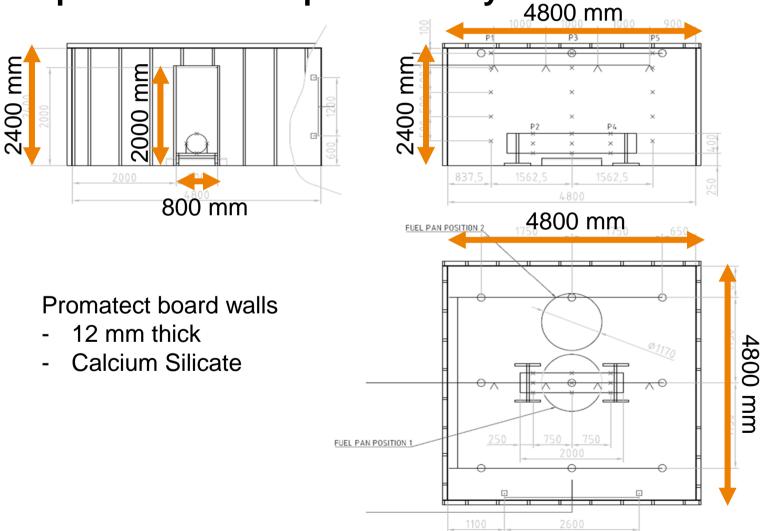
In a 10 × 10 m² compartment, this is 3200 kg or two midsized cars <u>every minute!!</u>

Experimental program

Total of 27 tests at SP in Sweden

Fire suppression configurations

- WMS at ~6 {/m²/min
- Drencher at 10 l/m²/min
- Drencher at 32 {/m²/min
- Dual system: WMS at ~6 {/m²/min + Drencher 5 {/m²/min


Obstructions

- None: Free burning
- Dummy torpedo
- Dummy torpedo + Promatect sheet

Experimental set-up - Geometry

Experimental set-up – Dummy torpedo

Experimental set-up – Dummy torpedo

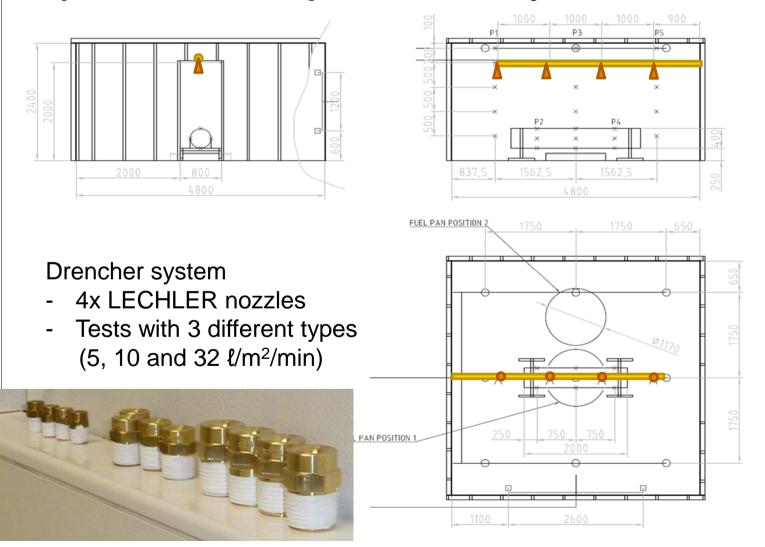
Dummy torpedo over fuel pan #1

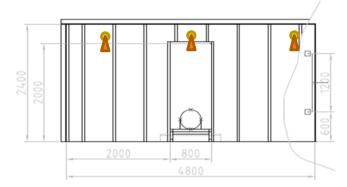
-

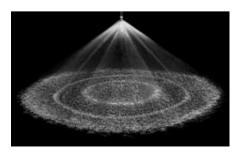
-

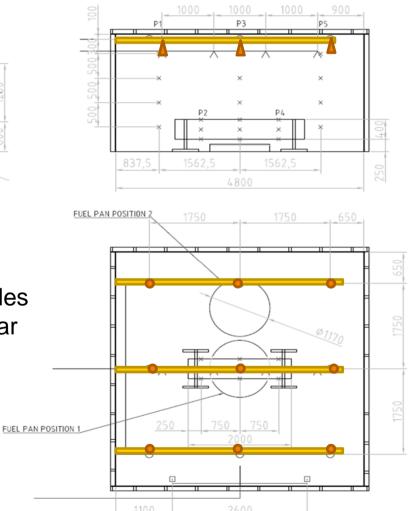
-

12 November 14, 2012 B. Boonacker, R. van der Wal Fire protection in ammunition


Experimental set-up – Fuel pan locations

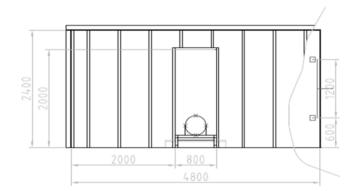

Experimental set-up – Drencher system


Experimental set-up – Water Mist System

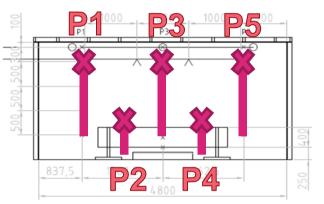


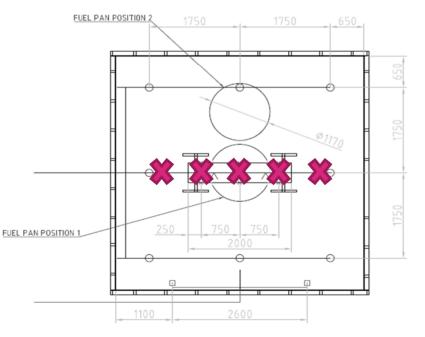
Water Mist system

- Low pressure (10 bar)
- 9x BETE TF8-170° nozzles
- K-factor of 5.93 ℓ/min/√bar
- Est. drop size: 133 µm



Experimental set-up - Instrumentation


Thermocouple trees


- 5 positions (P1-P5)
- K-type

Oxygen measurement - 2 heights at P5

Water flow rate

- In pipe
- At pump

Experimental performance criteria

- The <u>maximum outside surface temperature of dummy torpedo must</u> not exceed 200 °C.
- <u>One minute after activation the outside surface temperature must not exceed 150 °C</u>.
- Temperature on the <u>inside</u> of the dummy torpedo must<u>not exceed</u> <u>150 °C at all times</u>.
- In this research: **No** criteria for extinguishment of flames!

Video Test 14 – free burning

Your Expert opinion required!

Will the drencher system (32 litres/m²/min) extinguish the 1,3 MW fire?

Test 16: Drencher Fuel pan #1 [32 litres/m²/min.]

Test 22: Drencher Fuel pan #2 [32 litres/m²/min.]

Expert opinion required!

Will the drencher system (32 litres/m²/min) extinguish the 1,3 MW fire?

Will the WaterMist System (6 litres/m²/min) extinguish the 1,3 MW fire?

Yes:

No:

Video Test 15 – Water Mist

Expert opinion required!

Will the drencher system (32 litres/m²/min) extinguish the 1,3 MW fire?

Will the WaterMist System (6 litres/m²/min) extinguish the 1,3 MW fire?

Yes:

Yes:

No:

Which system extinguishes the 1,3 MW fire the fastest?

m:

(WMS+Drencher: 6+5 l/m²/min)

(10 l/m²/min)

Test 17: Drencher [10 litres/m²/minute]

Test 18: Drencher + WMS [5 + 6 litres/m²/minute]

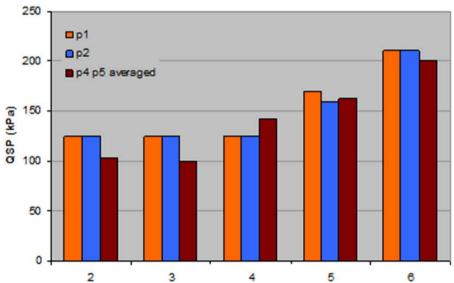
No:

Expert opinion required!

Yes:

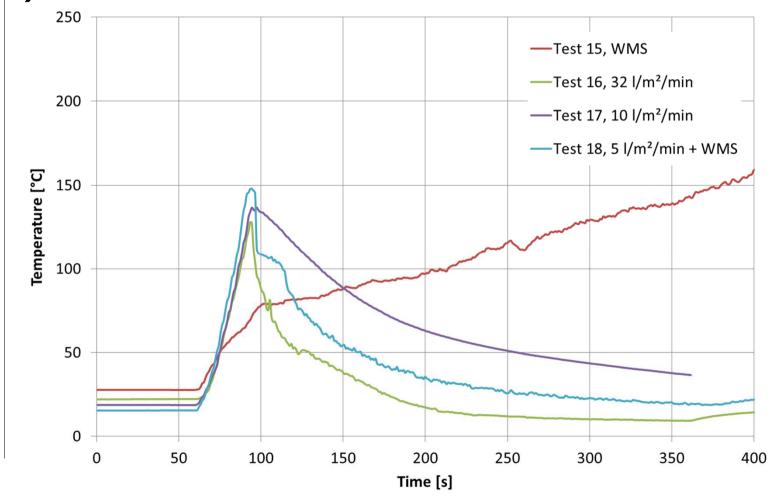
Will the drencher system (32 litres/m²/min) extinguish the 1,3 MW fire?

Will the WaterMist System (6 litres/m²/min) extinguish the 1,3 MW fire?

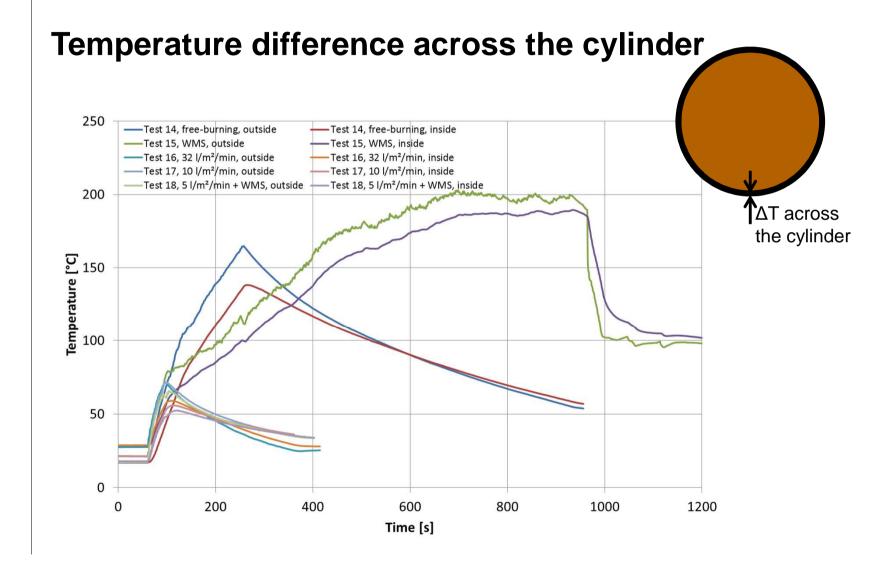


Added water mist effect: Explosion suppression

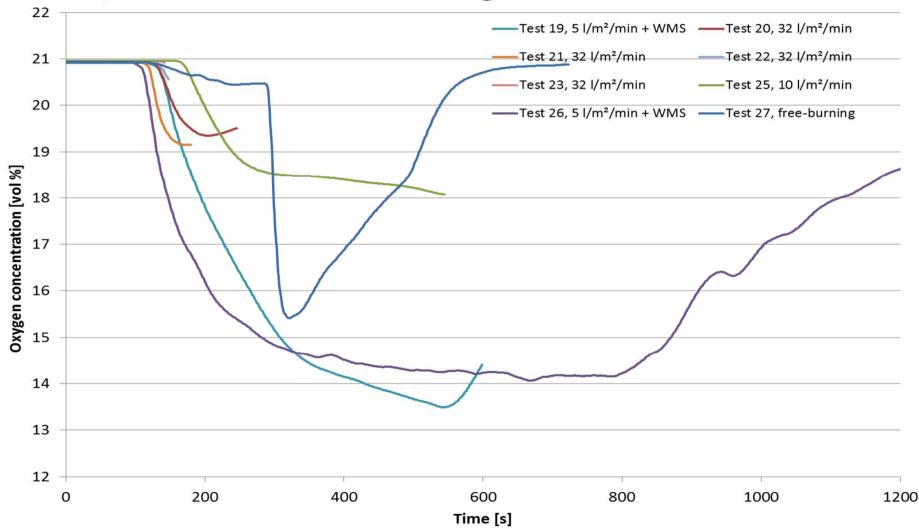
- Full scale explosion trials in TNO bunker
- Dispersion of water mist prior to the explosion:
 - Reduced peak pressure effects by up to 50 %
 - Greatly reduced temperatures inside the compartment (from 600 °C to 100 °C)


Test results (overview)

Test	Drencher	WMS	Fuel pan	Obstruction	Peak	Peak surface	Time to ext.	O2 conc. at
	ℓ/m²/min	ℓ/m²/min	position		surface T [°C]	T > 1 min [°C]	[s]	ext. [vol%]
14	-	-	1	-	550 ¹	-	-	Data not available
15		6	1	Ordinance	203	203	Did not extinguish	17.9 ²
16	32	-	1	Ordinance	128	39	24	20.2
17	10	-	1	Ordinance	138	89	45	19.9
18	5	6	1	Ordinance	148	92	53	19.7
19	5	6	2 ³	Promatect lined up with ordinance	150	81	Did not extinguish	13.5 ²
20	32	-	2 ³	Promatect lined up with ordinance	113	35	27	20.3
21	32	-	24	Promatect lined up with ordinance	77	30	7	20.5
22	32	-	24	-	50	31	7	20.9
23	32	-	24	Vertical 460 mm Prometect board	40	27	15	20.9
24	10	-	24	-	65	38	160	19.2
25	10	-	2 ³	Promatect lined up with ordinance	162	82	Did not extinguish	18.2 ²
26	5	6	2 ³	Promatect lined up with ordinance	151	105	Did not extinguish	14.0 ²
27	-	-	2 ³	-	604 ¹	-	-	15.5 ²



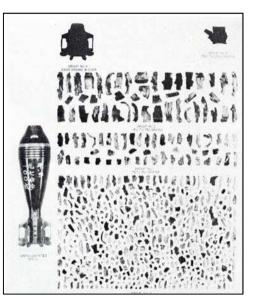
Maximum temperature of dummy torpedo – Fuel pan #1

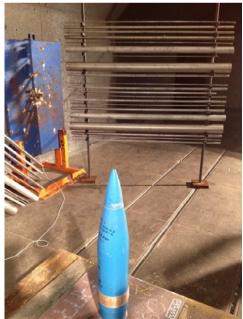


Oxygen concentration @ 500mm height

Conclusions

- Configurations with drencher capacity well below 32 {/m²/min fulfilled the performance requirements
- Results of a 5 l/m²/min drencher system in conjunction with a 6 l/m²/min WMS are comparable to a 10 l/m²/min drencher system
- WMS at 6 l/m²/min is insufficient to fulfil the assumed performance requirements and the peak surface temperature exceeds 200 °C.
- A dual system may show increased survivability due to inherent redundancy
- A dual system may be costly and complex to implement
- A dual system of which one is a water mist system could be designed for explosion suppression





Follow up / Questions

- Damaged system tests January 2013
 - Damaging of piping is done <u>today</u> at TNO
- Different obstructions
- Different configurations

Questions???

Thank you for your attention!

