

ADVANCEMENTS IN UNDERSTANDING WATER-MIST SYSTEMS: FROM SPRAY CHARACTERIZATION TO REAL-SCALE APPLICATIONS

Paolo E. Santangelo^a, <u>Paolo Tartarini^b</u>, Massimiliano Bettati^c

^a Department of Fire Protection Engineering, University of Maryland, USA ^b DIEF, Università degli Studi di Modena e Reggio Emilia, Italy ^c Bettati Antincendio S.r.l., Italy

Agenda and Problem Statement

Task 1 – Spray Characterization

- •What are the discharge characteristics of water-mist sprays issued by commercial nozzles?
- •What physical parameters are to be investigated to quantitatively assess their performance?
- •What spray-related mechanisms are of significant interest in determining suppression?

Task 2 – Suppression in Full-Scale Scenarios

- How does the spray actually perform against a realscale severe fire case?
- •What parameters are to be measured to quantitatively evaluate suppression performance?
- How is suppression performance influenced by the introduction of additives to water?

Background and Recent Advancements

Main References:

- **Wang et al.**, Exp. Fluids 33 (2002) 587-593. Low pressure (2-8 bar), PIV + Digital-Image Processing. Main results: drop size and velocity distribution at 1 m distance from the orifice. Other: breakup length.
- **Paulsen Husted et al.**, Fire Saf. J. 44 (2009) 1030-1045. High pressure (100 bar), hollow- and full-cone nozzles, PIV and PDA. Main results: comparison of these techniques, drop size and axial velocity in the initial region of the spray.
- **Santangelo**, Exp. Therm. Fluid Sci. 34 (2010) 1353-1366. High pressure (60-80 bar), full-cone nozzle, *Malvern Spraytec*, PIV, mechanical patternator. Main results: drop-size and flux distribution at 1 m distance from the orifice, velocity field and spray-cone angle in the initial region of the spray. Other: breakup length.
- **Santangelo et al.**, Proc. IMECE2011 6 (2011) 1167-1174. High pressure (80 bar), hollow-cone nozzle, *Malvern Spraytec*, PIV, mechanical patternator. Main results: drop-size axial trend from the orifice throughout 1-m distance, initial velocity, parametric analysis.

Recent Developments:

- Drop-size axial evolution: potential **coalescence** and **secondary atomization**.
- Initial velocity and cone angle for hollow-cone water-mist sprays.
- **Parametric analysis** comparing different orifices (flow number, outlet diameter).

Sketch of the experimental apparatus: a) PIV setup (velocity field and spray-cone angle); b) *Malvern Spraytec* and mechanical patternator (droplet size). All dimensions are in mm.

Employed Nozzles and Injectors

CJX series by *Bettati Antincendio S.r.l.* (pressure-swirl atomizers, hollow-cone sprays), here operated at 80 bar (pressure right upstream the injector)

Injector	Orifice Diameter	Flow Number	
	(mm)	(lpm bar ^{-0.5})	
B070	0.49	0.1167	
B250	1.14	0.4167	

Drop-Size Experimental Procedure

- Radial symmetry of the spray is assumed as a simplifying hypothesis.
- At 5, 10, 25 and 50 cm distance from the injector outlet, the drop-size distribution consists of the crude *Malvern Spraytec* results along a generic diameter.
- At 1 m distance from the injector outlet, a flux-based weighting procedure is employed to reconstruct the overall drop-size distribution, thus overtaking the biasing effect due to the mismatch between the geometric shape of *Malvern Spraytec* sampling volume and the spray cross section.
- Volume flux is yielded by patternation tests.

Equation to reconstruct the volume fraction pertaining to the *i*th drop size over all the *j* measurement locations:

$$V_{i}^{''} = \sum_{j=1}^{N} q_{j}^{''} \cdot \frac{1}{\rho_{L}} \cdot \frac{\Delta r}{R} \cdot VF_{i,j}$$

PIV Analysis: Parameters and Procedure

- The PIV apparatus features a 30 mJ pulsed-Nd:YAG laser (by *Dantec Dynamics*), a thermo-electrically cooled CCD camera (14 bit, 4 Mpixels) and a post-processing software (by *LaVision*).
- Measurements have been taken at 4 Hz frequency, with a time interval of 5 μ s between two exposures of the same pair.
- >No seeding has been added: droplets constitute tracking particles themselves.
- >Only axial and radial velocity components have been considered, because the tangential tends to collapse onto this latter within few millimeters downstream the outlet.
- LSV (Laser Speckle Velocimetry) has been employed to process images in the highlysaturated region (axially stretching over about 5 mm from the orifice).
- >Results upstream the breakup location are to be considered as unreliable (continuum flow).
- >The velocity field has been reconstructed over a set of 300 images.

PIV Results: Velocity Maps and Profiles

Map of velocity magnitude for *a)* $B070 (V_{max} \approx 101 \text{ m s}^{-1})$ and *b)* $B250 (V_{max} \approx 85 \text{ m s}^{-1})$ injectors

Radial velocity profiles in the region

- a) close to the orifice (10-20 mm) and
- b) far from the orifice (30-40 mm).

- Coalescence phenomena appear to govern droplet size after secondary atomization has occurred (about 15 cm downstream the outlet).
- The same qualitative drop-size trend is shown by both the injectors, even though larger diameters are generated by the bigger orifice.
- An attempt to extrapolate SMD at the supposed breakup location (4 mm downstream the outlet) has been made through a simple 3rd-degree polynomial curve.

Physical Modeling for Initial Velocity

The classic inviscid model developed by Giffen and Muraszew (Atomization of Liquid Fuels, Chapman & Hall, London, UK, 1953) for pressure-swirl atomizers inspired some theoretical analysis to predict velocity and spray-cone angle.

Physical Modeling for Droplet Size

The very first physical parameter to be investigated is sheet thickness, which is $(1 - 12^{0.5})$

Rizk and Lefebvre (J. Propul. Power 1 (1985) 193-199) found that initial SMD is proportional to $t^{0.39}$ in pressure-swirl atomizers: this relation was mainly connected to fuel sprays, but results to be correct for water-mist too.

Lefebvre (Atom. Spray Technol. 3 (1987) 37-51) discusses the characteristic diameter as constituted by two contributions:

- **First stage:** disruptive hydro- and aerodynamic forces, *f((Re·We^{0.5})^{-c})*;
- Second stage: velocity gradients, *f(We^{-g})*.

Wang and Lefebvre (J. Propul. Power 3 (1987) 11-18) provide an expression for SMD under certain ranges for dynamic viscosity and surface tension:

$$SMD = 4.52 \cdot \left(\frac{\sigma\mu_L^2}{\rho_A \Delta P_L^2}\right)^{0.25} \left(t \cdot \cos\theta\right)^{0.25} + 0.39 \cdot \left(\frac{\sigma\rho_L}{\rho_A \Delta P_L}\right)^{0.25} \left(t \cdot \cos\theta\right)^{0.75}$$

Injector	Theoretical sheet thickness, t (mm)	Extrapolated SMD (mm)	SMD/t ^{0.39}	Modeled SMD	SMD relative error
B070	149.78	27.64	3.92	28.14	1.80%
B250	244.77	35.83	4.19	37.34	4.21%

Task 2 – Main References and Motivation

References:

- Experimental and numerical studies on flow-flame interaction of water-mist sprays in simple heptane pool fires (P.E. Santangelo et al., Proc. 14th Int. Heat Transf. Conf. 5 (2010) 571-580);
- Experimental tests of water-mist discharge against high-rise-storage fires, within a highly equipped large-scale facility (P.E. Santangelo and P. Tartarini, Appl. Therm. Eng. 45-46 (2012) 99-107; P.E. Santangelo and P. Tartarini, Proc. 12th Int. Conf. Multiph. Flow Ind. Plants (2011) paper V.4).

Objectives:

- Challenging water-mist fire-suppression performance in a large-scale and highly hazardous scenario;
- Comparing suppression capabilities with and without a commercially available additive.

Water-mist tests in a High-Hazard Storage facility (UNI EN 12845); additive F-500 by *Hazard Control Technologies Inc.*

Parameters of Suppression Performance

- The fire should be **spatially controlled**, preventing the surrounding materials (i.e., the target shelf) from being burnt;
- The higher temperatures within the domain should be **limited under conservative values** to preserve the structural configuration of the building (i.e., the test chamber);
- The temperatures at eye level should be **kept as low as possible** to allow the best conditions for fire fighters;
- The fire spread within the involved commodities (i.e.: in the main shelves) should **be vertically and horizontally limited** as much as possible to optimize the rate of damages.

Experimental Setup

- •Test chamber: Prefabricated iron box, base area ~ 83 m² (12 m × 6.94 m × 8 m);
- •**Storage structure:** Iron beams, 3 shelves (5.65 m × 0.8 m × 6.89 m each), 8 storage levels;
- **Nozzle:** CJX 1140 B1SG by *Bettati Antincendio S.r.l.*, 7 injectors (total flow number = 1.4 l min⁻¹ bar^{-0.5}); 9 nozzles located at the ceiling above the ignition-involved shelves;
- **Electric pump:** Maximum static head = 130 bar, operative pressure at the nozzle inlet = 100 bar.

Technical sketch of the experimental facility: a) view from side; b) view from above

Combustible Materials

Commodities (*EUR Standard Plastic Commodities*):

- wooden pallets,
- cardboard boxes,
- plastic glasses.

	Wooden pallets	Cardboard boxes	Polystyrene glasses
Main shelves	64	256	30 720
Target shelf	32	128	15 360
Total amount	96	384	46 080
Total mass (kg)	2 400	691.20	138.24

Material	Lower Heat Value (MJ kg ⁻¹), H	Combustion Efficacy, ϕ	Limiting Coefficient, ψ
Wood	19	0.8	1
Cardboard	17	0.8	1
Polystyrene	40	1	1

$$\int_{f}^{N} = \frac{\sum_{i=1}^{N} m_{i} \cdot H_{i} \cdot \phi_{i} \cdot \psi_{i}}{A} = 617.33 \, MJm^{-2}$$

NOMINAL FIRE LOAD:

q

Experimental Facility – Photos

Experimental Measurements and Procedure

- •**Thermocouples:** K type, diameter = 0.5 mm. 5 (TC1-TC5) placed between the ceiling and the nozzle height (hot gas temperature), 1 (TC6) placed at the flame axis 3.6 m distant from ignition source, 1 (TC7) placed at the target shelf, 1 (TC8) placed at eye-level height in between the shelves;
- •**Thermal-response wires:** Activation temperature = 88 °C, all wires placed along the ignition-involved shelves at 1.1, 1.9 and 6.5 m from the floor;
- **Ignition source:** Heptane pool fire (120 ml), placed below the ignition-involved shelves;
- **Discharge:** 30 min; Test 1 sole water, Test 2 water/F-500 (2% volumetric concentration); if temperature at the ceiling = 350 °C, the test is interrupted (manual extinction for building preservation; failed suppression);
- Water-mist activation: both thermal-response-wire and temperature based.

Report From the Sensors	Discharge-Activation Time (s)
Alarm from 3 thermal-response wires within 60 s after ignition	60
Alarm from 2 thermal-response wires within 90 s after ignition	90
No/1 alarm from thermal-response wires within 120 s after ignition	120
Ceiling temperature = 300 °C	Immediate

Locations

- Ceiling Height: 5 thermocouples (TC1-5) to measure hot-gas temperature;
- **Main Shelves:** 1 thermocouple (TC6) at the axis of the heptane pool fire to measure flame temperature;
- **Target Shelf:** 1 thermocouple (TC7) to measure the potential involvement of the target shelf;
- **Eye Level:** 1 thermocouple (TC8) to measure the environmental conditions for fire fighters.

12th International Water Mist Conference – Barcelona, Spain – November 14^h - 15th, 2012

Additional Outcomes

Mass-loss evaluation:

- No mass-loss actual measurement was carried out, since the main scope was to evaluate thermal control and because the size of the involved experiments;
- Following a post-fire damage evaluation, 4 pallets (base) and 6 storage levels (height) in the main shelves were involved in the fire spread for both the tests;
- As a conservative assumption, 25% and 37.5% of the combustible materials were burnt in Test 1 (sole water) and Test 2 (water/F-500) respectively;
- As an additional assumption, burning in Test 1 is assumed to stop at the end of emergency operations (0.16 $t_{Discharge}$), while burning in Test 2 is assumed to stop at the end of the discharge;
- Considering a free-burn time of 120 s (as in both tests), the **average burning rate** in **Test** 1 is **3.15 higher** than in **Test 2**.

How does the presence of an additive affect drop size?

- Relative viscosity (to water) appears to be the main governing parameter in determining droplet size in water/surfactants (retardants) flows;
- According to F-500 declared components, its relative viscosity seems to be quite high (1.6-7.7);
- This case seems to be similar to agricultural water/drift retardant sprays;
- Drop size is assumed to **increase** by **35%** (D_{v50}) with respect to the sole-water flow.

Conclusions

- An experimental investigation was conducted to investigate velocity field, spray-cone angle drop-size axial evolution in water-mist sprays generated by two hollow-cone nozzles, employing laser-based diagnostics.
- The velocity field shows the same qualitative characteristics for both the injectors, while the cone angle is wider for larger orifices.
- Drop-size trends show that secondary atomization is the governing phenomenon until a minimum is reached; then, coalescence tends to increase droplet size.
- Drop-size trends are qualitatively very similar, but larger orifices tend to generate bigger droplet size on an average basis.
- Some predictive relations for pressure-swirl atomizers have been successfully validated for the water-mist case, as a result of non-viscous modeling.
- A water-mist system operating at high pressure was challenged in suppressing a fire within a high-hazard scenario; sole-water and water/additive flow were employed;
- Thermal transients was considered as the main parameter to determine suppression performance, together with post-fire damage evaluation and a temperature safety threshold;
- The sole water has been proved to provide ineffective action, even enhancing the temperature rise (turbulent effect on fire); on the other hand, the water/F500 flow yielded to successful thermal control and fire suppression;
- Fire spread was mainly vertical over both the tests (reduced temperature rise at the target shelf); eye-level temperature was lower than 80 °C over both the tests, thus allowing safe fire-fighters' operations.

Future Work

- Coupled velocity and drop-size measurements are to be pursued, employing shadowgraphy as one of the possible techniques.
- A more accurate patternation system should be designed to collect the smaller floating particles, thus implying an indirect evaluation of the evaporated share of the whole spray.
- Statistic analyses on turbulence can be conducted on PIV images, thus evaluating air entrainment within the spray.
- > Modeling air entrainment in hollow-cone sprays still needs to be accomplished.
- Additional full-scale tests under downsized configurations should be performed to carry out a scaling approach on the involved physical phenomena;
- Numerical simulations of the fire scenario through CFD codes should be attempted to evaluate their predictability in terms of temperature profile and fire spread.

Thanks for your kind attention.

Questions?

Prof. Ing. Paolo Tartarini Dipartimento di Ingegneria «Enzo Ferrari» Università degli Studi di Modena e Reggio Emilia Via Vignolese 905/b 41125 Modena (Italy) Tel.: +39 059 205 6146 Fax: +39 059 205 6126 E-mail: paolo.tartarini@unimore.it