

Protection of Cultural Heritage Applications with Low Pressure Water Mist Systems

By Alex Palle, VID Fire-Kill IWMA Conference 2012

I am here to talk about TAPAS...

VID fire-kill

Agenda

- 1) What solution shall one provide when working with a project?
- 2) Cultural heritage applications.
- 3) System to be provided.
- 4) Approval/testing of system.
- 5) Project examples.

1) What Solution Shall One Provide when Working with a Project?

One have to define:

- The application the challenge.
- System type specification to fit the application best.
- Approval/documentation which can be accepted.

2) Cultural Heritage Applications.

What is Cultural heritage applications?

- Tangible buildings which shall be preserved for the future.

What type areas are often found in such?

Large open volumes, concealed spaces, rooms.

Fuel types?

- Class A fuels.

30/05/2012

Fnvironment?

- Open well ventilated areas, Cold areas, enclosed areas.

Other things to encounter?

- Artifacts, wall/ceiling paintings, water damage.

3) System to be Provided.

Decision matrix

	Sprinkler	Internal Gas Systems	Watermist standard products	Watermist special products
Large Volume size	GOOD	BAD	BAD	GOOD
High height	GOOD	BAD	BAD	GOOD
Fuel protection	GOOD	GOOD	GOOD	GOOD
Fire spread risk to other rooms	GOOD	BAD	GOOD	GOOD
Limitations due to artifacts/water damage	BAD	GOOD	GOOD	GOOD
Water limitation	BAD	GOOD	GOOD	GOOD
System space requirements/Visability	BAD	BAD	GOOD	GOOD
Project time limitations	GOOD	GOOD	GOOD	BAD
Approval needed	GOOD	GOOD	GOOD	BAD

The "best" solution

3) System to be Provided.

Standard watermist system:

- Existing system.
- Common knowledge on usage and performance.
- Approved.

Is best when:

- Limitations in approval fits application.
- Limitations to technical performance fits application.
- Project time is scarce.

Special watermist system:

- Not available yet to be developed.
- To be tested/approved.

Is best when:

- Something special is needed because of application.
- When there is time to do R&D, testing etc.

3) System to be provided.

Standard watermist system:

Special watermist system:

For long concealed spaces

Standard watermist system

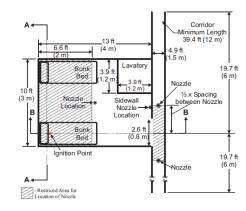
Example of available approvals for cultural heritage:

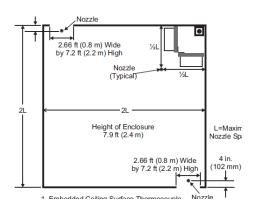
- FM5560: US light Hazard (EU OH1)
- UL2167: Residential areas, LH, OH1.
- VDS: Hotels, Offices.
- LPS1283: Hotel, offices.
- CEN/TS14972 annex A: Offices

Advantages:

- Has been tested and approved to work in fires.
- Easy accepted.

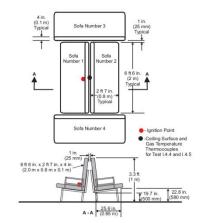
Disadvantages:


- Limitations to dimensions.
- Limitations to application type.
- Limitation to technical performance.
- Limitation to water spray damage.



Standard watermist system

Example of test method FM5560 Light Hazard:


- Apartments
- Atriums
- Churches
- Concealed spaces
- Gymnasiums
- Hospitals and hospital laboratories
- Hotel rooms
- Institutions
- Kitchens
- Libraries
- Meeting rooms in convention centers and hotels
- Metalworking shops with nonhydraulic cutting operations
- Mineral processing such as: glass, cement, ore treating, gypsum processing, etc.
- Museums
- Nursing or convalescent homes
- Offices
- Restaurant seating areas
- Schools and universities classrooms
- Unused attics

LIMITS:

- -5m ceiling height.
- -Pendent automatic nozzle
- -Sidewall only for small compartments.

Special watermist system:

Available approval for cultural heritage:

- CEN/TS 14972 Appendix B.
- Fire test demonstrations.

Advantages:

- Can test special products.
- Can provide specific required data for the exact project.

Disadvantages:

- Limitations to "strenght" of approval.
- Cost and time requiring to do.

Special watermist system

Example of test method CEN/TS14972

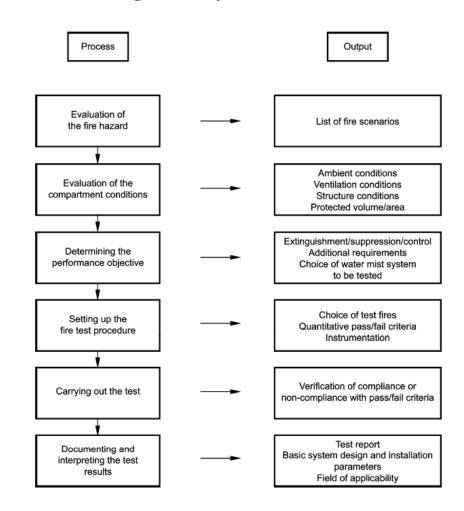


Figure B.1 — Process of developing a fire test procedure

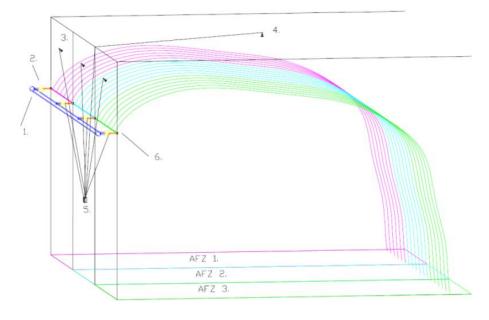
Wooden Church:

- Large and high open space with low fuel loads (sofas, benches)
 placed at floor. Fire spread risk high due to all wood.
- Heated and unheated areas with natural ventilation.
- Ceiling painting not to be destroyed by installation or water spray
- Authority was fire brigade.

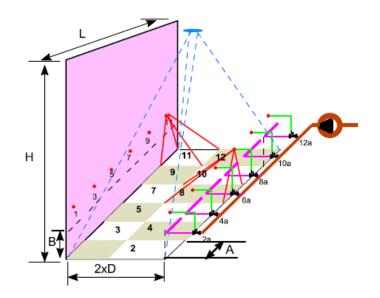
System choosen: SPECIAL WATERMIST SYSTEM.

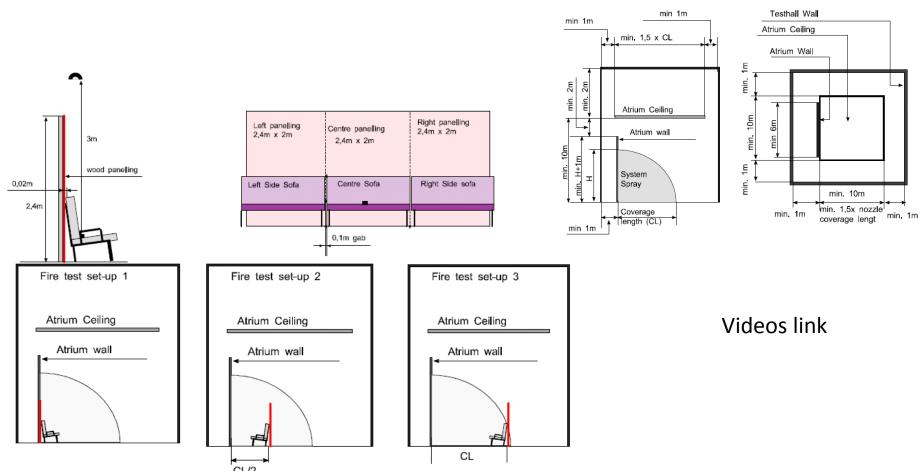
Museum:

- Ceiling heights up to 3m with relative low fuel loads (furniture)
 placed at floor. Fire spread high due to low ceiling heights.
- Heated areas with natural ventilation.
- Artifacts in rooms not to be destroyed by water except in the vicinity of a fire.


System choosen: STANDARD WATERMIST SYSTEM.

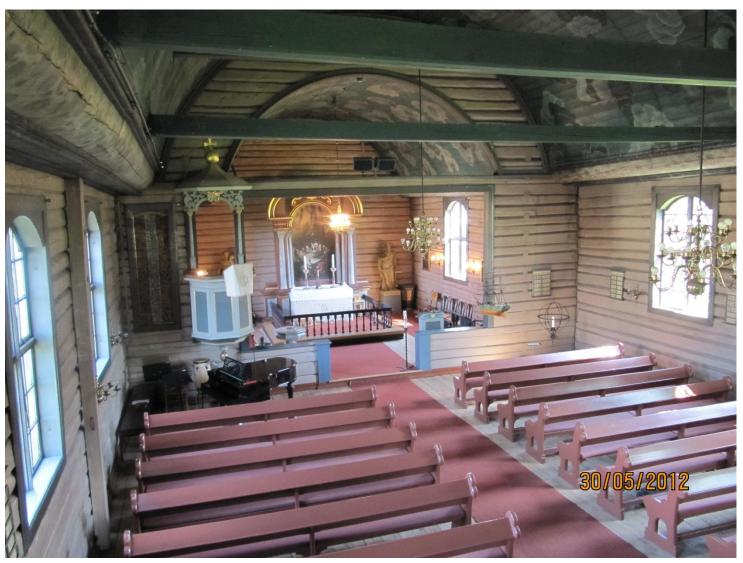
Wooden Church:

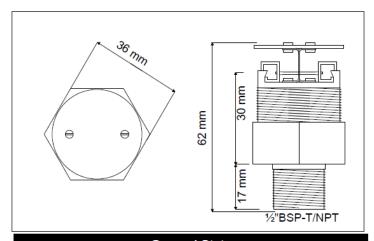

System: MODEL APS


Length (L):
Height (H):
Width (2xD) Type A
Type B
Type C
Nozzle wall height (B):

unlimited
unlimited
max. 16m
max. 20m
max. 20m
sam. 26m

Test scenarios from test method designed in accordance to CEN/TS 14972 Annex B.





Museum:

System: MODEL OH-OS

<u>General Stats</u>					
Minimum water pressure	10 bar				
Maximum working pressure	16 bar				
K-factor (metric)	16.5 (l/t/√bar)				
FM approved nominal release temperature	57°C				
Other nominal release temperatures	68°C, 79°C, 93°C				
Time Response Index (metric)	RTI < 50 Fast Response Class				
Drop size	DV ₉₀ < 300 μm				
<u>Application</u>					
Spacing (max)	13 m ² (3.6m x 3.6m)				
Distance to wall (max)	1.8 m				
Height (max)	5 m				

Videos link

Thank you for your attention.