Protection of Data Center Application with High-Pressure Water Mist Systems
Summary

1. Common technologies used for this application
2. Choosing HWPM system
3. Objectives of the HPWM system
4. Designing the system
5. Project examples
6. Full scale fire test
1. Common technologies used for this application

<table>
<thead>
<tr>
<th>Technology</th>
<th>Principle</th>
<th>Usage in data center</th>
</tr>
</thead>
</table>
| Inert Gas | • Extinguishes fires by a reduction of the oxygen concentration, stored in high-pressure cylinders in the form of compressed gas
 • Systems can be modular or centralized | commonly used |
| Chemical gas | • Extinguishes fires by flames inhibition
 • Hydro fluorocarbons (HFC) or fluorocarbon (FC), stored in high-pressure cylinders (pressurized with dry nitrogen) | commonly used |
| Sprinkler | • Fire control or fire suppression by cooling materials,
 • Water tank and pump station (electrical, diesel)
 • Flux density : 5 mm/min/m² | scarcely used |
| Low pressure water mist | • Fire control or fire suppression by cooling materials.
 • Water tank and pump station (electrical, diesel)
 • Flux density : 2 - 3 mm/min/m² | scarcely used |
| High pressure water mist | • Fire control or fire suppression by cooling materials
 • Water tank, pump station, cylinders systems (electrical, diesel)
 • Flux density : 1 – 2,5 mm/min/m² (floor void 0,5 mm/min/m²) | commonly used |
2. Choosing HPWM system

- Low water demand
 - Immediately cools the fire, preventing fire growth. The result is minimal water damage to surrounding equipment and the environment, reducing operational downtime to a minimum.
 - Flux density: 1 - 2.5 mm/min/m²

- System flexibility
 - Modular design, it easy to extend to cover more sections.
 - Only one water mist unit needed to cover all areas.
 - No need to shut off ventilation before releasing the water mist system.
 - Can be instantly activated without the need to seal off and/or evacuate the area.

- Minimal invasive technology
 - Water mist is documented to be harmless to electrical installations (IP23), which enables you to keep your datacenter running even while fighting a fire.
 - No over-pressurisation of the fire-affected area when the system is activated.
 - The system can be discharged immediately upon detection of a fire – without any threat to human safety.

- Proven technologies and approvals
 - Proven technology since 15 years
 - Approvals on the complete system (VDS, FM, etc...).
 - Extensive reference: Equinix, Digital Realty Trust, Teledtity, Iliad, Barkley's Bank
3. Objectives of the HPWM system

Ordinary Hazard 1 areas (EN 12845):

- Data Rooms:
 - Electrical cables
 - Computers

- Critical Issues of Server Rooms:
 - Cold corridor
 - Hot corridor.

- Technical Rooms (UPS, Battery, Switchgear rooms, etc.):
 - Electrical cables
 - Solid materials

- Floor void:
 - Electrical cables
3. Objectives of the HPWM system

Ordinary Hazard 3 area (EN 12845):

- Storage rooms (typical class A fire):
 - Electronic equipment, tape storage

Special hazard:

- Generator, diesel engine, transformers:
 - Typical class B fire
 - Hydraulic oil
 - Diesel fuel
3. Objectives of the HPWM system

- Data Rooms, Technical Rooms, Floor void, Storage rooms:
 - Suppress and control the fire
 - Minimum autonomy of the system 60 minutes

- Generator, diesel engine, transformers:
 - Extinguish or suppress the fire
 - Minimum autonomy of the system 30 minutes
4. Designing the system

Water Mist Standards:

- NFPA 750
- ANSI FM 5560
- CEN TS 14972
- BSI DD 8458 / DD 8489

- Do not provide system design parameters as sprinkler or gas fire extinguishing system standards
- Parameters are generated via application related full scale fire tests
4. Designing the system

LH/OH areas:

- European example according to EN12845:

<table>
<thead>
<tr>
<th>Hazard Class</th>
<th>Design Density mm/min</th>
<th>Area of Operation m m</th>
<th>Wet or pre-action</th>
<th>Dry or alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>2.25</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH1</td>
<td>5.0</td>
<td>72</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>5.0</td>
<td>144</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>OH3</td>
<td>5.0</td>
<td>216</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>OH4</td>
<td>5.0</td>
<td>360</td>
<td>Not allowed Use OH1</td>
<td></td>
</tr>
<tr>
<td>HHP1</td>
<td>7.5</td>
<td>260</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>HHP2</td>
<td>10.0</td>
<td>280</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>HHP3</td>
<td>12.5</td>
<td>280</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>HHP4</td>
<td>deluge (see NOTE)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Needs special consideration. Deluge systems are not covered by this standard.

Question: Where is the double interlock system?
4. Designing the system

Ordinary Hazard 1:

Pre action system:
- Area of operation: 72 m²
- Approved OH1 nozzle: according to CEN TS14972:
- Flux density: 1.5 to 2.5 mm/min/m²
- Maximum flow: 180 lpm
- Storage tank for 60 minutes: 10.8 m³
4. Designing the system

Floor void (OH1):

Pre action system :

- Area of operation : 72 m²
- Approved floor void nozzle : according to VdS False ceilings and false floors
- Flux density : 0,5 to 2,5 mm/min/m²
- Maximum flow : 180 lpm
4. Designing the system

Ordinary Hazard 3:

Pre action system :

- Area of operation : 216 m²
- Typical storage area in data center : 85m²
- Approved OH3 nozzle : according to R2B storage setup (ST5, Cat. IV. Max 2.2 m storage height)
- Flux density : 2,2 to 3 mm/min/m²
- Maximum flow : 648 lpm
4. Designing the system

Special hazard:

Total Flooding system:

- Area of operation: the complete volume of the room.
- Typical volume of a generator room with 5 m ceiling height: 480 m³
- Approved TF nozzle: according to IMO1165, FM5560 appendix E and F, VDS

Nozzle layout:

- Medium flux density: 0,2 lpm/m³
- Maximum flow: 96 lpm
5. Project examples

Project ILIAD (FREE)

- 24 rooms protected
- 24 pre action valve
- More than 8000 m² protected
- One pump unit 224l/min
5. Project examples

Project GMF

- 3 rooms protected
- 3 pre action valve
- 1000 m² protected
- two pump unit 224l/min
5. Project examples

Project GMF
5. Project examples

Project GMF
5. Project examples

Project Digital Realty Trust

- 3 data rooms protected
- 13 generators protected
- More than 20 technical rooms protected
- 8 pre action valve
- One pump unit 560l/min
5. Project examples

Project Telecity Group

- 4 data rooms protected
- 6 generators protected
- More than 15 technical rooms protected
- 6 pre action valve
- One pump unit 224 l/min
5. Project examples

Project Global Switch

- 12 diesel unit (generators and drups) protected
- 12 pre action valve
- One pump unit 176 l/min
5. Project examples

Equinix AM3 Data Centre, The Netherlands

- 17 pre action valve
- 826 nozzle heads
- One pump unit 336 l/min
6. Full scale fire test

Demonstration of SEM-SAFE® High-Pressure Water Mist System
Thanks for your attention!