Water Spray Curtain for Shielding Hydrogen Flames – Effect of Flame Spectrum on Total Transmissivities

Dr S. Dembele & A. Heidari

Director - Centre for Fire and Explosion Studies (CFES) Kingston University London (UK)

13th International Water Mist Conference - 16th & 17th October 2013, Paris, France

Centre for Fire and Explosion Studies

Outline

- Background
- Objectives
- Methodology
- Results & Discussions
- Conclusions

Centre for Fire and Explosion Studies

Background

- In the event of accidental fires, water spray curtain could be an effective means for shielding and attenuating fire thermal radiation to safe levels
- The technique could be used to protect personnel, as evacuation means, protect structures, flammable hydrocarbon storage tanks etc...
- Typical permissible heat flux 1.6 kW/m² (personnel), 16 kW/m² (integrity of structures)

2

Kingston University London

Centre for Fire and Explosion Studies

Source: S. Dembele, J. Wen, JF Sacadura, "Analysis of the two-flux model for predicting water spray transmittance in fire protection application" *ASME Journal of Heat Transfer*, 122(1), pp. 183-186 (2000).

AIM IS NOT TO EXTINGUISH OR SUPPRESS THE FIRE IN SHIELDING/CURTAIN APPLICATIONS !

Centre for Fire and Explosion Studies

Kingston University London

- Transmissivity of the water spray curtain is the most practical information to quantify its attenuation efficiency but depends on incident flame spectrum
- For transmissivity calculations, literature studies are based on hydrocarbon flames with assumption of a blackbody incident spectrum (emissivity ε_λ=1) to simplify calculations
- For hydrocarbon fires, blackbody emission spectrum acceptable for optically thick sooty flames (soot continuous emission dominant over gaseous H₂O, CO₂, CO banded emission)

Δ

35 m diameter LNG pool fires (Montoir Tests 1987)...

Source: NEDELKA D., MOORHOUSE J., TUCKER R.F. The Montoir 35 m diameter LNG pool fire experiments. *Liquefied Natural Gas-9* Congress, Nice, October 17-20 1989.

...blackbody emission spectrum acceptable

Centre for Fire and Explosion Studies

Kingston University London

Water spray curtain – 3m gasoline pool fires...

European Project ASTRRE (1994-1998) – water spray curtains for shielding fire thermal radiation

Source: S. Dembele. Modelisation et etude experimentale des transferts de chaleurs dans un rideau d'eau - PhD Thesis – INSA Lyon- France, 1998.

...spray curtain transmissivity based on assumption of blackbody incident spectrum at flame temperature

Centre for Fire and Explosion Studies

Kingston University London

What about Hydrogen flames?

- Worldwide interest in hydrogen energy because of its environmental benefits
- Many research studies to assess safety hazards of hydrogen fires
- Protection against H₂ flames using barrier walls suggested by Schefer et al., IJHE vol.33, 2008
- Use of water spray curtain for shielding hydrogen flame radiation not reported in literature

Centre for Fire and Explosion Studies

Emission spectrum of Hydrogen diffusion flames

Source: Imamura et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region. Int J Hydrogen Energy 2008; 33:3426-35.

Hydrogen flame made visible by flame reaction with sprayed NaCl solution

- Hydrogen flame barely visible, non-sooty
- Radiant emission mainly due gaseous water vapour H₂O in the infrared spectral region

Centre for Fire and Explosion Studies

Using water spray curtain for shielding hydrogen flames

- Assumption of flame blackbody emission spectrum (which simplifies transmissivity calculations) strictly not valid !
- Published literature transmissivities data based on incident blackbody spectrum cannot be employed for hydrogen flames

Centre for Fire and Explosion Studies

Objectives

Propose a methodology to calculate the spectral and total transmissivities of water spray curtains in shielding radiation from hydrogen flames using the actual/real H₂ flame spectrum

Investigate quantitatively the validity of the assumption of simplified blackbody incident spectrum in evaluating transmissivities by comparison with the actual H₂ flame spectrum data

Centre for Fire and Explosion Studies

Kingston University London

Methodology

Spectral Transmissivity of the water spray curtain

• Additional complexity: model the flame gaseous H_2O spectral emissivity $\mathcal{E}_{f\lambda}$

Total Transmissivity of the water spray curtain

$$\tau_{ws} = \frac{q_{tr}}{q_{inc}} = \frac{\int_{0}^{\infty} q_{tr,\lambda} d\lambda}{\int_{0}^{\infty} q_{inc,\lambda} d\lambda} = \frac{\int_{0}^{\infty} \tau_{ws,\lambda} q_{inc,\lambda} d\lambda}{\int_{0}^{\infty} q_{inc,\lambda} d\lambda} = \frac{\int_{0}^{\infty} \tau_{ws,\lambda} \psi_{\lambda} F_{v} \varepsilon_{f\lambda} \pi I_{b\lambda}(T_{f}) d\lambda}{\int_{0}^{\infty} \psi_{\lambda} F_{v} \varepsilon_{f\lambda} \pi I_{b\lambda}(T_{f}) d\lambda} = \frac{\int_{0}^{\infty} \tau_{ws,\lambda} \psi_{\lambda} \varepsilon_{f\lambda} I_{b\lambda}(T_{f}) d\lambda}{\int_{0}^{\infty} \psi_{\lambda} \varepsilon_{f\lambda} I_{b\lambda}(T_{f}) d\lambda}$$

• For transmissivity calculation assuming blackbody spectrum : $\epsilon_{f\lambda}=1$

Centre for Fire and Explosion Studies

Kingston University London

Modelling the spectral emissivity of hydrogen flames (gaseous H₂O)

Source: S. Dembele. Modelisation et etude experimentale des transferts de chaleurs dans un rideau d'eau - PhD Thesis – Lyon-France, 1998.

- Emission/absorption of H₂O in specific bands (not continuous like soot)
- Large number of vibration-rotation transition lines in H₂O spectrum: LINE-BY-LINE SPECTRAL ANALYSIS IMPRACTICAL DUE TO LARGE COMPUTING TIME
 12

Centre for Fire and Explosion Studies

Modelling the spectral emissivity of hydrogen flames (gaseous H₂O)

NARROW BAND STATISTICAL GAS RADIATION MODEL APPROACH ADOPTED FOR SPECTRAL EMISSIVITY CALCULATIONS (averaging properties over spectral narrow band)

$$\overline{\epsilon}_{f\lambda} = \frac{1}{\Delta \nu} \int_{\nu-\Delta \nu/2}^{\nu+\Delta \nu/2} \varepsilon_{f\lambda} d\nu = \frac{1}{\Delta \nu} \int_{\nu-\Delta \nu/2}^{\nu+\Delta \nu/2} [1 - \exp(-k_{f\lambda} \cdot L_m)] d\nu = \frac{1}{\Delta \nu} \int_{\nu-\Delta \nu/2}^{\nu+\Delta \nu/2} [1 - \tau_{f\lambda}] d\nu = 1 - \overline{\tau}_{f\lambda} = \overline{\alpha}_{f\lambda}$$
$$\overline{\tau}_{f\lambda} = \frac{1}{\Delta \nu} \int_{\Delta \nu} \exp\left[-k_{f\lambda} \cdot L_m\right] d\nu = \exp\left[-\frac{\overline{\beta}_{\nu}}{\pi} \left(\sqrt{1 + \frac{2\pi \chi_{H_2O} P L_m \overline{k_\nu}}{\overline{\beta}_{\nu}}} - 1\right)\right]$$

L_m: mean-beam length of hydrogen flame calculated using correlations for hydrogen jet flames

Further details of models in: **S. Dembele & J.X. Wen.** Analysis of the screening of hydrogen flares and flames thermal radiation with water sprays – International Journal of Hydrogen Energy (2013, in PRESS).

Centre for Fire and Explosion Studies

Kingston University London

Modelling radiative heat transfer in water sprays

$$\mu \frac{dI_{\lambda}(\mathbf{x},\mu)}{\beta_{d\lambda}d\mathbf{x}} + I_{\lambda}(\mathbf{x},\mu) = (1 - \omega_{d\lambda})I_{b\lambda}[T_{spray}] + \frac{\omega_{\lambda}}{2} \int_{-1}^{1} \varphi_{d\lambda}(\mu,\mu')I_{\lambda}(\mathbf{x},\mu')d\mu' = S_{\lambda}(\mathbf{x},\mu)$$

RADIATIVE TRANSFER EQUATION

- Thermal radiation attenuation by water droplets due to absorption and scattering
- Water droplet spectral properties (absorption and scattering coefficients, phase function calculated from Mie theory
- The radiative transfer equation solved with the TWO-FLUX method (intermediate level of difficulty compared to Discrete Ordinates Method or Finite Volume Method)

Centre for Fire and Explosion Studies

Results and Discussion

Scenarios studied: Hydrogen flame

	Hydrogen jet Diffusion Flame		
Nozzla diamator (mm)	2		
	Z		
Flame length L _f (m)	4.9		
Flame width W _f (m)	0.8		
Temperature (K)	1600		
Molar fraction H_2O	0.35		
Molar fraction N_2	0.65		

Flame investigated experimentally by: Mogi T, Horiguchi S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames. J Loss Prev Process Ind 2009; 22:45–51

Centre for Fire and Explosion Studies

Scenarios studied: water spray curtain

	Mean droplet diameter d _d (mm)	Droplet mass loading C _d (kg/m ³)	Water screen thickness, L(m)	
Water spray curtain 1	100	0.1	0.5	
Water spray curtain 2	100 0.2		0.5	
Water spray curtain 3	100	0.1	1	
Water spray curtain 4	100	0.2	1	
Water spray curtain 5	300	0.1	0.5	
Water spray curtain 6	300	0.2	0.5	
Water spray curtain 7	300	0.1	1	
Water spray curtain 8	300	0.2	1	
Water spray curtain 9 500		0.1	0.5	
Water spray curtain 10 500		0.2	0.5	
Water spray curtain 11	500	0.1	1	
Water spray curtain 12	500	0.2	1	

Model verification studies carried out.

Centre for Fire and Explosion Studies

17 Kingston University London

Centre for Fire and Explosion Studies

Thermal radiation spectrum from hydrogen flame that is incident on the water spray curtain

Centre for Fire and Explosion Studies

Comparative results of total transmissivities

		Curtain optical thickness	Water spray curtain total transmissivity (%)				
			Actual H ₂ spectrum	Blackbody spectrum	Ratio Blackbody/Actual		
Water curtain 1 (100)		1.6	26.4	40.6	1.5		
Water cu	rtain 2	3.1	8.6	21.3	2.5		
Water cu	rtain 3	3.1	8.6	21.3	2.5		
Water curtain 4		6.3	2	9	4.5		
Water curtain 5 (300)		0.5	62	68.5	1.1		
Water curtain 6		1	38.8	48	1.2		
Water curtain 7		1	38.8	48	1.2		
Water curtain 8		2	15.6	25.5	1.6		
Water curtain 9 (500)		0.3	74.8	78.4	1.1		
Water cur	tain 10	0.6	56.1	61.8	1.1		
Water cur	tain 11	0.6	56.1	61.8	1.1		
Water curt	ain 12	1.2	31.7	39.3	1.2		

- Over-prediction of transmissivity with blackbody spectrum compared to actual H₂ flame spectrum
- Optical thickness of curtain key parameter in analysing spectra effects

Centre for Fire and Explosion Studies

Kingston University London

Analysis of the results

- Scattering dominant attenuation over absorption (for scenarios studied)
- Regions 2 and 4 have a strong influence on attenuation and affect emission bands of H₂O (1.38 μm and 1.87 μm)

Centre for Fire and Explosion Studies

Spectral transmissivities of the curtains

Centre for Fire and Explosion Studies

Kingston University London

Conclusions

- A methodology to calculate the spectral and total transmissivities of hydrogen flames presented
- Investigation of a wide range of scenarios using the actual H₂ flame emission spectrum shows that water spray curtains could be an effective means to attenuate hydrogen thermal radiation
- The blackbody spectrum adopted for hydrocarbon flames simplifies transmissivity calculations (no need to calculate spectral emissivity) but could lead to largely over-predicted transmissivities for hydrogen flames ... consequences for designs
- For optically thin curtains (optical thickness<0.7) BB spectrum and actual H₂ spectra yield similar total transmissivities
- For optically thick curtains (optical thickness>1) BB spectrum should be avoided and the actual H₂ spectra should be used for total transmissivity calculations

Centre for Fire and Explosion Studies

Thank you for your attention!

Questions?

Centre for Fire and Explosion Studies