

Business from technology

Experimental characterization and CFD modelling of high pressure water mist sprays

Jukka Vaari, Topi sikanen, Antti Paajanen and Simo Hostikka

Introduction

- Goal: creating a physically correct model of a high pressure water mist spray with Fire Dynamics Simulator
- Physically correct:
 - Drop size profile
 - Drop velocity profile
 - Mist flux profile
 - Air entrainment
 - Water distribution

FDS model parameters for nozzles

- &DEVC XYZ=0.0, 0.0, 2.5 QUANTITY='TIME' SETPOINT=0.0 PROP_ID='MY NOZZLE' /
- &PROP ID= 'MY NOZZLE' OFFSET=0.05 PARTICLES_PER_SECOND=5000 PART_ID='WATER DROPLETS' OPERATING_PRESSURE= 70.0000 K_FACTOR= 0.35 DROPLET_VELOCITY=110.0 SPRAY_ANGLE=0.0, 10.0 /
- &SPEC ID='WATER VAPOR' /
- &PART ID='WATER DROPLETS' SPEC_ID='WATER VAPOR' DIAMETER=80. GAMMA_D=2.4 /

OFFSET

- No model for atomization in FDS
- Droplets are inserted in the simulation at a distance (offset) from orifice where atomization is complete
- OFFSET=0 is possible but may sometimes be numerically awkward

y [mm]

VELOCITY

 The exit velocity of a liquid jet from the discharge orifice may be estimated from Bernoulli's law as

$$v = C_{\sqrt{\frac{2p}{\rho}}}$$

- Pressure in Pascals (1 bar = 10⁵ Pa)
- For water, ρ=1000 kg/m³
- Discharge coefficient C depends on nozzle geometry and liquid Reynolds number (0.6 – 1)
- Alternatively it is possible to define orifice diameter and flow rate from which the velocity is computed by FDS (assuming C=1)

DIAMETER

- Atomization leads to a spectrum of drop sizes
- FDS describes the drop size spectrum as a combination of lognormal and Rosin-Rammler distributions
- The diameter given as input is $D_{V,0.5}$, the Volume Median Diameter of the distribution
- FDS6 offers the user an option to input an arbitrary size distribution

$$F(d) = \begin{cases} \frac{1}{\sqrt{2\pi}} \int_0^d \frac{1}{\sigma d'} e^{-\frac{[\ln(d'/d_m)]^2}{2\sigma^2}} \, \mathrm{d}d' & (d \le d_m) \\ \\ 1 - e^{-0.693 \left(\frac{d}{d_m}\right)^{\gamma}} & (d_m < d) \end{cases}$$
$$f(d) = \frac{F'(d)}{d^3} \left/ \int_0^\infty \frac{F'(d')}{d'^3} \, \mathrm{d}d' \quad ; \quad F' \equiv \frac{\mathrm{d}F}{\mathrm{d}d} \end{cases}$$

F(d) is the fraction of liquid volume in droplets smaller than d f(d) is the fraction of droplets smaller than d

DIAMETER

Example: D_{V,0.5}=100 μm, γ=2.4

How to obtain the numbers?

Method 1

- Measurements close to discharge orifice (~0.1m)
 - Diameter
 - Velocity
 - Flux
- Use as inputs at measurement plane (offset distance)
- Problems:
 - Dense spray
 - Incomplete atomization
 - Verification

Method 2

 Measurements far away from discharge orifice (~1m)

8

- Diameter
- Velocity
- Flux
- Use diameter as input at offset distance
- Verify results at measuring distance
- Problem:
 - Velocity (momentum conservation)

9

Nozzle characterization with modified NFPA750

Digital Imaging (Shadowgraphy)

Camera				
resolution	2009: 2048 x 2048 (JAI), 2010: 1600 x 1200 (Lynx)			
Camera optics				
objective	Nikon 200 mm macro + 2x converter (=400 mm)			
Laser	Cavilux Smart			
type	Diode laser			
max. power	560 W / 2.8 mJ per pulse			
wavelength	690 nm			

- Measurement volume 12mm x 12mm x 3 mm
- Smallest detectable drop diameter about 10 µm

Digital Imaging (Shadowgraphy)

- Diameter and concentration directly from pattern recognition
- Velocity by particle tracking from two images taken with $\Delta t=5\mu s$

12

High-pressure micronozzles

 Three high-pressure micronozzles characterized experimentally and modelled with FDS (svn 10155)

	A	В	С	
Туре	Full-cone Full-cone Full-con		Full-cone	
K-factor (I/min/bar ^{1/2})	0.2	0.43 0.77		
Pressure (bar)	?	?	?	
Velocity (m/s)	?	?	?	
Cone angle (deg)	?	?	?	
D _{v,0.5} (μm)	?	?	?	
γ	?	?	?	
Offset (m)	?	?	?	
Particles per second	?	?	?	

```
&DEVC XYZ=0.0, 0.0, 2.5
QUANTITY='TIME'
SETPOINT=0.0
PROP ID='MY NOZZLE' /
```

&PROP ID= 'MY NOZZLE' OFFSET=0.05 PARTICLES_PER_SECOND=5000 PART_ID='WATER DROPLETS' OPERATING_PRESSURE= 70.0000 K_FACTOR= 0.35 DROPLET_VELOCITY=110.0 SPRAY_ANGLE=0.0, 10.0 /

&SPEC ID='WATER VAPOR' /

&PART ID='WATER DROPLETS' SPEC_ID='WATER VAPOR` DIAMETER=80. GAMMA D=2.4 /

Model parameters for micronozzles

	A B C		С	
Туре	Full-cone Full-cone Full-co		Full-cone	
K-factor (I/min/bar ^{1/2})	0.2	0.43	0.77	
Pressure (bar)	70	70	70	
Velocity (m/s)	112	112	112	
Cone angle (deg)	10	12	14	
D _{v,0.5} (μm)	84	79	116	
γ	2.9	2.26	1.98	
Offset (m)	0.1			
Particles per second	200000			

User decision From Bernoulli's law (C=0.95)

, Frans shata arasha

From photographs

From experimental GRV

From experimental GRV

- Trial & error

Other modeling considerations

- Discretization interval (grid resolution)
- Particle CFL parameter
- Turbulence model
 - Deardorff (FDS 6 default)
 - Vreman
 - Constant Smagorinsky (FDS 5 default)
 - Dynamic Smagorinsky

Micronozzles: velocity

Micronozzles: mean diameter

Micronozzles: mist flux

Grid sensitivity

19

FDS: constructing a multi-orifice spray head

 In FDS, a multi-orifice spray head is constructed analogously to a real spray head: by placing several micronozzles to the same physical location but with different orientations

&DEVC XYZ=0.0,0.0,5.000 PROP_ID='NZLE' ORIENTATION= 0.7071, 0.0000, -0.7071 QUANTITY='TIME' SETPOINT=0.0 ID='45_1' / &DEVC XYZ=0.0,0.0,5.000 PROP_ID='NZLE' ORIENTATION= 0.5000, 0.5000, -0.7071 QUANTITY='TIME' SETPOINT=0.0 ID='45_2' /

20

Multi-orifice SPH's

Spray heads constructed of micronozzles A, B, and C

	SH1	SH2	SH3	SH4	SH5
Center nozzle	А	С	В	В	В
Perimeter nozzle	A	B	A	B	B
Number of perimeter nozzles	6	6	8	8	8
Perimeter angle (°)	60	60	45	45	30

Air entrainment

Probing the aerodynamic spray-gas interaction in near-range

Air entrainment

• Axial gas velocities behind the spray heads

Air entrainment

Particle trajectories and average gas velocity for SH1

24

Full-scale water distribution: effect of grid size

SH3 from 5 m height

 $\Delta x=2.5$ cm

25

The computational cost

Domain size: 7.5m x 7.5m x 5m

$\Delta x=2.5 \text{ cm}$

- 18 meshes
- 1 million cells per mesh
- 18 million cells total
- 5363h of CPU time (298 h of wall clock time) for 30 s of real time

 $\Delta x=20 \text{ cm}$

- 1 mesh
- 32400 cells total
- 2.1h of CPU time for 30 s of real time

mesh: S

26

Conclusions

- Three high-pressure water mist micronozzles have been characterized according to modified NFPA 750 methodology
- Physically accurate FDS models for the micronozzles have been constructed
- FDS models for multi-orifice spray heads can be constructed based on micronozzle data
- Predicting full-scale spray dynamics accurately requires considerable computational resources

27

Acknowledgements

- The work was carried out under the Fire Suppression RD project sponsored by the Finnish funding Agency for Technology and Innovation
- Marioff Corporation Oy has supported this research financially and by providing hardware