

Fire Test Protocols for Water Mist System Protection of Data Processing Equipment Rooms/Halls

Jonathan Carpenter, FM Approvals Hong-Zeng (Bert) Yu, FM Global Research

> IWMA Conference October 28 & 29, 2015 Amsterdam

Challenges to Fire Protection Systems

Sprinkler System

· Everything gets wet

Water Mist System

· Performance not proven

Clean Agent System

· Size, size, size

Light Hazard Protection

- Wet system
- No propagating cables
- Ventilation interlock

Unproven Performance

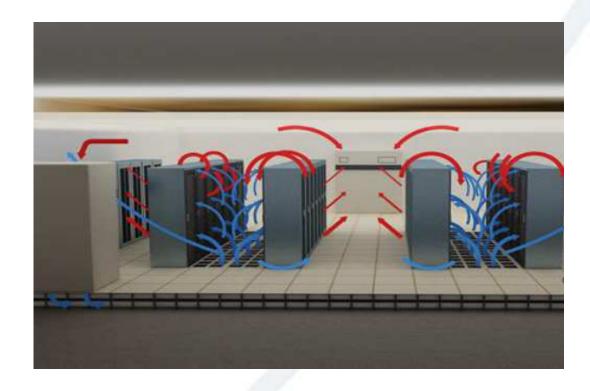
- Preaction configurations
- Overhead cable racks in data hall/room
- Forced Ventilation

Objective:

Develop water mist system fire protection test protocols for data center facilities:

- data processing equipment rooms/halls
- below raised floor in data processing equipment rooms/halls

Project Scope


Define data hall fire load

Project Scope

- Define data hall fire load
- Evaluate forced ventilation

Project Scope

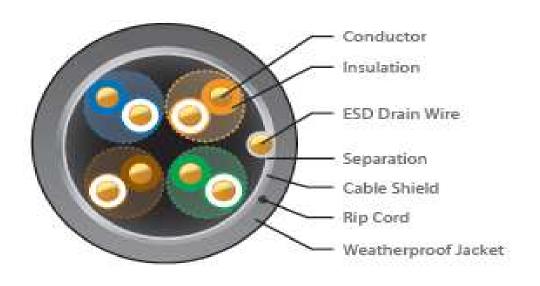
- Define data hall fire load
- Evaluate forced ventilation
- Evaluate water delivery time delay

Fire Load - Cables

Cables in data centers

Cable Type	Outer Jacket	Wire Insulation		
3M, Cat5e	PVC	PE		
Belden, Cat5	PVC	Polyolefin		
Belden, Cat5e	PVC	Polyolefin		
Clipsal, Cat5	PVC			
CommScope, Cat5e	PVC	Fluorinated ethylene propylene Polyolefin		
CommScope, Cat6	PVC	Fluorinated ethylene propylene Polyolefin		
Excel, Cat5e	PVC	PE		
Excel, Coaxial	PVC	PE		
HellermanTyton, Cat6e	PVC	PE		
Panduit, Cat6	PVC	PE		
PheonixContact, Cat5	Self extinguishing polymer	PE		
ProPower, Coaxial	PVC	PE		
Etherline, Cat6A	PVC	PE		
Olflex Classic 110, Power	Halogen-free	Halogen-free		
TOUGHCable, Cat5e	PE	PE		

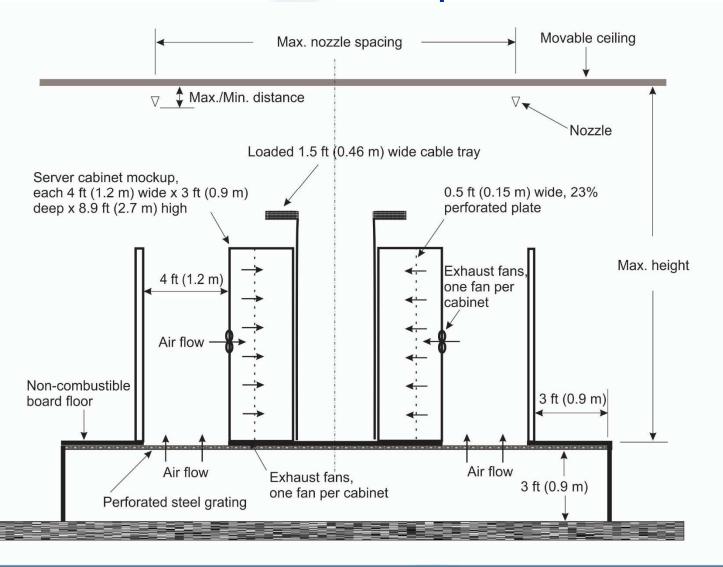
Fire Load - Cables


- Test Standard for Cable Fire Propagation, Class 3972
 - Fire Propagation Apparatus (FPA)
 - ASTM E-2058, Standard Test Method for Measurement of Material Flammability Using a Fire Propagation Apparatus (FPA)

Fire Load - Cables

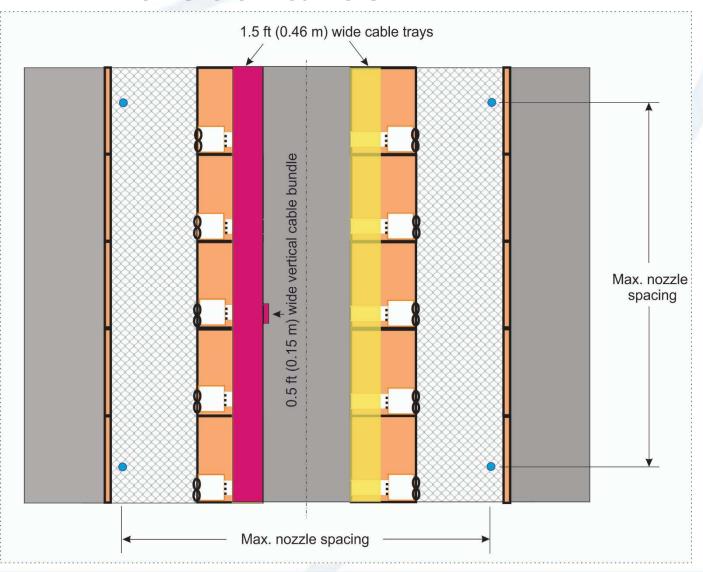
- Data Cables TOUGHCable, Cat 5e
 - 6 mm diameter
 - Representative propagating data cable

Fire Load - Packaging


- Blade/Server Packaging
 - Corrugated cardboard carton
 - 21" x 21" x 20" high, 2 lbs.
 - Expanded Polystyrene (EPS)
 - 20" x 20" x 9", 2.25 lbs. (1.08 lb/ft3)
 - Heat release rate per carton
 - ~500 kW

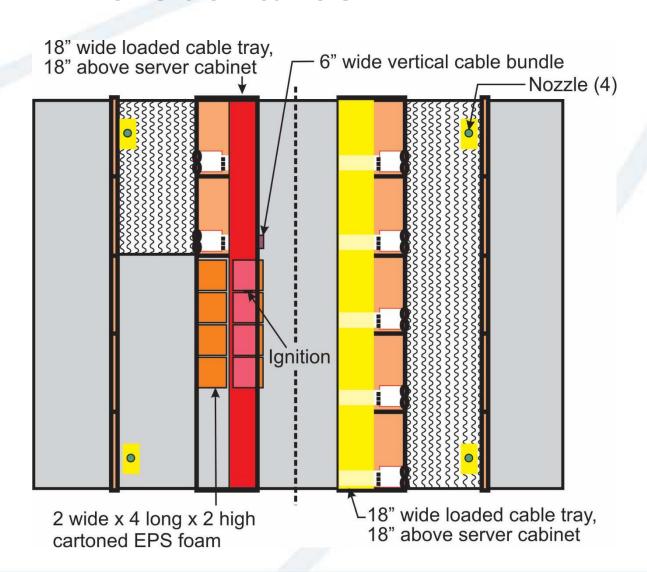
Server Hall – Test Mockup

Server Hall – Test Mockup



below non-combustible boards

Server Hall – Fire Scenarios

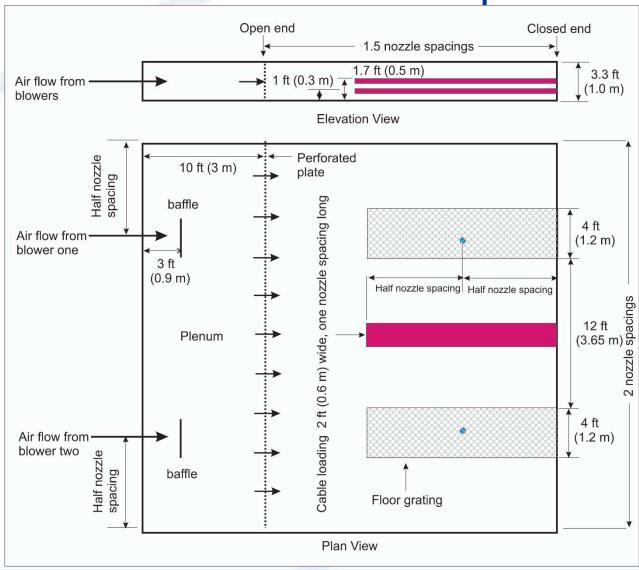

Cable

Server Hall – Fire Scenarios

Packaging

Acceptance Criteria

- Cable fire scenario fire spread
 - Fire does not reach end of cable tray
- Carton fire scenario fire spread
 - Fire does not spread to end of carton stacks
 - Fire does not reach end of cable tray
- Fires extinguished in 30 minutes


Acceptance Criteria

- Perimeter Nozzles
 - Ideal, no operation
 - If operation points to number of nozzles in design
- Steel angle at ceiling
 - Not to exceed 1000°F (538°C)
- No nozzles operate
 - Failure

Below Raised Floor – Test Mockup

 Cable tray between grating

Below Raised Floor – Test Mockup

Cable tray under grating

Plan View

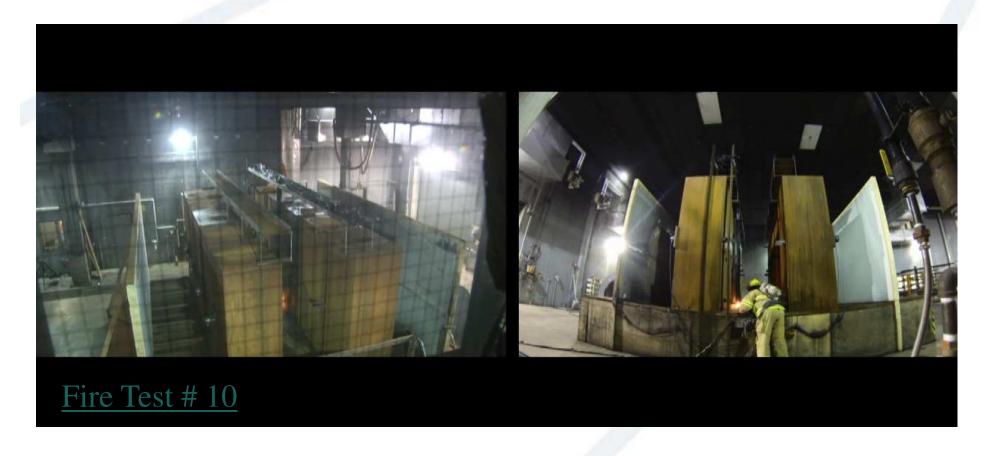
(0.6 m)

Acceptance Criteria

- Cable fire scenario fire spread
 - Fire does not reach end of cable tray
- Fire extinguished in 30 minutes
- Gas temperature should not exceed 1000°F (538°C)
- No nozzles operate
 - Failure

Server Hall Cable Scenario Free Burn

Benchmark - Server Hall Cable Scenario


	Test	Sprinkler Spacing	Sprinkler Distance Below Ceiling	Water Delay sec	Results min:sec
	Prescribed Design	12 x 12 ft (3.7 x 3.7 m)	4 in (100 mm)	30	Extinguished 08:20

- Application Density = $0.1 \text{ gpm/ft}^2 (4 \text{ mm/min})$

Benchmark - Server Hall Cable Scenario

0.1gpm/ft² (4 mm/min) sprinkler

Summary

- Water mist system fire protection test protocols for data center facilities have been developed for:
 - data processing equipment rooms/halls
 - below raised floor in data processing equipment rooms/halls
- The new test protocols will be published in the next revision of FM Approvals Standard, Class 5560, Water Mist Systems which is expected early next year.

