WATERMIST Fire protection in DATACENTERS
IWMA Amsterdam
October 2015
Unica Automatic Sprinkler
HJ Kooijmans
Programme

- Introduction…
- Watermist, how does it work….?
- Watermist, what are the possibilities….?
- Watermist in Datacenters
- Watermist testing for datacenters by FM
- Basic rules fire safety in datacenters
Unica technical installations

- 14 departments in the Netherlands
- 3 regions
- 1550 FTE’s
- Anual turnover € 235 mio
- 8 special business units
Unica fire protection

- Fire detection systems
- Extinguishing gas systems
- Watermist
- Sprinkler systems
- Manual extinguishers
- Dry risers
Conventional fire protection solutions in Datacenter …….

Automatic Fire detection

Extinguishing gas

Sprinkler
Datacenters now

samen maken we de toekomst
Next generation fire protection for datacenter…

Automatic fire detection

HPWM watermist

Sprinkler

Ext.gas
Water (mist) in datacenters?

- What about the impact of water on vulnerable apparatus?
- What about the impact of air velocity in data rooms caused by cooling systems?
- What about the relatively slow response of the heat triggered watermist system compared to smoke detector triggered gas systems?
Watermist …..How does it work?

Oxygen displacement benefits

- Reduction of oxygen concentration from 21% to 16.8% at the flame front during MicroDrop® discharge

Cooling benefits

- Reduction in temperature during initial 30 seconds of discharge from 590°C to 50°C

samen maken we de toekomst
Watermist in Datacenter

SAMEN MAKEN WE DE TOEKOMST
Design criteria for Data Centers

Fire risks in datacenter are complex and various. Custom made solutions based on risk analyses are required.
Where can we apply watermist?

- Transformer rooms
- Generator rooms
- CRAC Units
- Data floors
- Raised floors
- Switch rooms
- Battery rooms
- UPS rooms
- Offices
Watermist in Data Center

The challenge....

Data room risk analyses
Fire in datacenter

risk pyramid

risk = chance \times effect

- Total loss-------------major damage
- small incident----------minor damage

saam maken we de toekomst
Fire in datacenter

L.O.D ‘s = Lines Of Defence

- Total loss---

- Small incident

Paper bin fire
damage <1k

Action by staff;
Manual extinguishers
Fire in datacenter
L.O.D ‘s Lines Of Defence
unmanned situation

- Total loss---
- Small incident

Fire extension
Damage <10K

Action by staff on site
Manual extinguishers

1st automatic fire detection
alarm by aspiration system
Fire in datacenter
L.O.D ‘s Lines Of Defence

- Total loss---
- Small incident

- Fire extension
damage <50K

2nd automatic fire alarm

Proces trip: ventilation: turn lower.
Power shut down
Data will be saved to safe area

samens maken we de toekomst
Fire in datacenter
L.O.D ‘s Lines Of Defence

- Total loss
- Klein incident

Fire extension
damage <100K

Watermistsystem will be filled with water, glasbulb in nozzle will be activated on temperature. Watermist will attack the fire locally.

sam en maken we de toekomst
samen maken we de toekomst
Pro and contra’s

<table>
<thead>
<tr>
<th></th>
<th>Extinguishing gas</th>
<th>HP Watermist</th>
</tr>
</thead>
<tbody>
<tr>
<td>System price</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Footprint</td>
<td>Big</td>
<td>Small</td>
</tr>
<tr>
<td>Air tight enclosures</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Door fan testing</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Over pressure relief device</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>System refill costs after discharge</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Cylinder approval</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Forced ventilation</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Availability extinguishing medium</td>
<td>limited</td>
<td>Endless</td>
</tr>
<tr>
<td>Material damage by thermo shock</td>
<td>Y</td>
<td>n.a.</td>
</tr>
<tr>
<td>Water damage</td>
<td>n.a.</td>
<td>< IP22</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 6.1.2.2 Electrical Clearance from Water Spray Equipment to Live Uninsulated Electrical Components

<table>
<thead>
<tr>
<th>Nominal System Voltage (kV)</th>
<th>Maximum System Voltage (kV)</th>
<th>Design BIL (kV)</th>
<th>Minimum* Clearance</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>To 13.8</td>
<td>14.5</td>
<td>110</td>
<td>7</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>23.0</td>
<td>24.3</td>
<td>150</td>
<td>10</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>34.5</td>
<td>36.5</td>
<td>200</td>
<td>13</td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>46.0</td>
<td>48.3</td>
<td>250</td>
<td>17</td>
<td></td>
<td>432</td>
</tr>
<tr>
<td>69.0</td>
<td>72.5</td>
<td>350</td>
<td>25</td>
<td></td>
<td>635</td>
</tr>
<tr>
<td>115.0</td>
<td>121.0</td>
<td>550</td>
<td>42</td>
<td></td>
<td>1067</td>
</tr>
<tr>
<td>138.0</td>
<td>145.0</td>
<td>650</td>
<td>50</td>
<td></td>
<td>1270</td>
</tr>
<tr>
<td>161.0</td>
<td>169.0</td>
<td>750</td>
<td>58</td>
<td></td>
<td>1473</td>
</tr>
</tbody>
</table>

*Minimum clearance values are in inches and millimeters.
Compact pump units: plug and play

samenvassen we de toekomst
Manifold with 14 section valves

samen maken we de toekomst
samen maken we de toekomst
Fire test HP France
1. Active forced ventilation,
2. Single and double-tier cable tray fires,
3. Interlocked dry pipe/preaction configurations

European technology and American test standards…
Is this a happy marriage ?
MEANWHILE AT VW'S EMISSIONS TEST CENTER

THAT'S ANOTHER PASS ✔
Basic rules for fire protection in datacenters

- Good housekeeping
- Early warning fire detection (aspiration system)
- Implementation of a „how to handle” procedure in case of fire and adequate training of staff
- Implementation of a process trip procedure
- Pre-action watermist system in data rooms
- The watermist system must be adjusted to the Inventory of the fire load.
Thank you for your attention

samen maken we de toekomst