FireFOAM Modeling of Water Mist Suppression of Compartment Fires

N. Ren, H.Z. Yu, K.V. Meredith and Y. Wang

Sep. 21-22, 2016 16th International Water Mist Conference Vienna, Austria

Water mist

Effective for

- Confined spaces
- Compartment fires
- Ignitable liquid

Application

- Hotel, office, data center, etc.
- Shipboard, airplane, etc.
- Flammable liquid, etc.

Challenge

- Complex suppression mechanisms
- Limited codes and standards
- Design, installation, inspection
- Reliability

Water mist research

Spray characterization

- P.E. Santangelo, et al.
- B. Ditch, et al.

Tests

- T. R. Nichols, et al. (Library fire)
- A. Jenft, et al. (Enclosure liquid pool fire)
- G. Heskestad, H.Z. Yu, et al. (Water mist physical scaling)

Suppression modeling

- H. Jiang, et al. (Office space fire suppression)
- E. Kolstad, et al. (Engine room fire)

Modeling: Motivation

- Gain insight into water mist suppression mechanisms
 - Better understanding of the tests
- Provide engineering guidance
 - More efficient full-scale test design
 - Interpolation/extrapolation of the tests

FireFOAM

- FOAM (Field Operation And Manipulation)
- Open source fire modeling tool for research & engineering applications
 - https://github.com/fireFoam-dev
 - LES Solver (C++), based on OpenFOAM tool box
 - Unstructured mesh, massive parallel capability
- Physics based sub-models
 - Gas phase (combustion, soot/radiation)
 - Solid phase (pyrolysis)
 - Liquid phase (spray, surface water flow)

Overview

Objectives

- Flame extinction
 - Develop a flame extinction model with the presence of water mist spray
- Validation
 - Bench-scale
 - Wolfhard-Parker line burner without spray (U. MD)
 - Full-scale
 - Enclosure fire suppression (H.Z. Yu et al.)

Flame extinction

- Heat release rate
 - Fuel, oxidizer concentration
 - Flame temperature

Heat loss rate

- Strain rate
- Radiation
- Conduction

Model

- Critical flame temperature (FDS)
- Temperature strain rate

Temperature – strain rate

Bert Yu

- Opposite flow with detailed chemistry model (OPPDIF)

Sub-gird model

- Strain rate
 - Flame stretch

$$S_{f,sgs} = C_{strain} \frac{\varepsilon_{sgs}}{k_{sgs}}$$

Bench-scale validation

(Wolfhard-Parker Burner)

Validation (J. White et al.)

- Propane fires of 50 kW
- Inert quenching
 - Oxygen mole fraction ranges from 12% to 21% in co-flow

J.P. White, E.D. Link, A.C. Trouve, P.B. Sunderland A.W. Marshall, J.A. Sheffel, M.L. Corn, M.B. Colket, M. Chaos, H.Z. Yu, "Radiative emissions measurements from a buoyant, turbulent line flame under oxidizer-dilution quenching conditions," Fire Safety Journal, Vol. 76 (2015) pp. 74-84

Radiation (J. White et al.)

FM Global

Flame height

Full-scale validation

(Enclosure fire suppression)

Full scale enclosure fire

Spray info

- Hago 20-60P nozzle
- Full cone with 60° cone angle
- Discharge pressure 41.4 bar (90 m/s)
- Flow rate 2.78 L/min per nozzle
- Median volumetric diameter of spray: 88 micron

0.10

0.20

Chemical HRR

FM Global

Summary

- A temperature strain rate based flame extinction model is developed in FireFOAM and validated
- Wolfhard-Parker line burner
 - Inert thermal-quenching
- Enclosure fire suppression
 - Spray mixing is important
 - Hot smoke layer enhance spray evaporation
 - Larger fire & hotter environment facilitates flame extinction

Acknowledgement

FM strategic research program

- Sergey B. Dorofeev
- Louis Gritzo
- University of Maryland
 - Prof. André Marshall
 - Prof. Arnaud Trouvé
 - Dr. James White

Questions?