

The Use of a Water Mist Curtain as a Radiation Shield

DANIEL A. MARTIN, E.I.

IWMA YOUNG TALENT AWARD

22/09/2016

DANIEL MARTIN – IWMA YOUNG TALENT AWARD

Contents

- Water mist systems
- Objectives of the research
- Previous experimental research
- Background work
- Theoretical calculations
- Experimental setup
- Results
- Future work
- Conclusion

What is a water mist system?

- Fire suppression system using water droplets range in size from 10-1000 μm
- Requires less space and less water than traditional systems
- Alternative clean agent suppressant after the signing of the Montreal Protocol in the late 1980's

Potential uses of a water mist curtain shield

- Protect operational control rooms
 - Oil rigs
 - Marine vessels, etc
- Protecting high value targets from radiation exposure
- Prevent fire spread; i.e. compartmentation

Objectives of the research

- Measure the radiation attenuation through a high pressure low flow rate single nozzle water mist curtain
- Find the different radiation attenuation levels based on:
 - The vertical position within the water mist column
 - Vertical plane angle of the heat flux gauge
 - Radiation source

Previous experimental research

- Nozzle sizes tested:
 - Firefighting nozzles, sprinkler heads, and water mist heads
- Pressures and nozzle flow rate:
 - 0.076 10 bars
 - 0.12 4.7 L/min (mist), 360 1363 L/min (fire nozzle)
- Sources of radiation:
 - Gas radiant panel, liquid pool fire, wood crib fire, Fourier Spectrometer
- D_v0.5 sizes:
 - Varied by location in the spray column and the nozzle (24 550+ μ m)
- 10-70% attenuation

Background work

- Continuation of the PhD work conducted by Prof. Bjarne Husted
 - Experimental and CFD results on high pressure water mist systems comparing hollow and full cone nozzles:
 - Droplet sizes in various region of the mist column
 - Droplet velocities
 - Volumetric density

Theoretical heat flux

Target ${\dot Q^{''}}_{rad}$ (kW/m²) from the Radiant Panel							
Separation (m)	650ºC	700ºC	750ºC	800ºC			
0.4	10.7	13.2	16.2	19.6			
0.5	7.6	9.4	11.5	13.9			
0.6	5.6	6.9	8.4	10.2			
0.7	4.4	5.4	6.6	8.0			
0.8	3.5	4.3	5.3	6.4			
0.9	2.8	3.4	4.2	5.1			
1	2.2	2.8	3.4	4.1			

$$\dot{Q}''_{rad} = F * \varepsilon * \sigma * (T_{panel}^4 - T_{amb}^4)$$
 (1)

Target $\dot{Q}^{''}{}_{rad}$ (kW/m²) from the Line Burner								
	Fire Size (kW)							
eparation (m)	30	35	40	46	48			
0.4	2.5	2.7	3.0	3.3	3.4			
0.5	1.8	2.0	2.2	2.5	2.6			
0.6	1.3	1.5	1.7	1.9	2.0			
0.7	1.0	1.2	1.3	1.5	1.6			
0.8	0.8	1.0	1.1	1.2	1.3			

$$\dot{Q}''_{rad} = \frac{\dot{Q}}{A_T} * \chi \tag{2}$$

$$\dot{Q}''_{rad,1\,side\,of\,fire} = \dot{Q}''_{rad} * \frac{A_E}{A_T} * F \tag{3}$$

[Ref. 9]

22/09/2016

[Ref. 8]

DANIEL MARTIN – IWMA YOUNG TALENT AWARD

Theoretical Mie scattering

- Simplified method for solving the complex radiation transfer equation
- Physics approach to solving the scattering and extinction of an electromagnetic wave hitting a spherical particle
- MiePlot
 - Single source point, scattering analysis of a single droplet
 - Input: wavelength, droplet size/distribution, refractive indices
 - Outputs: several options but Intensity vs Scattering Angle of greatest interest

Theoretical Mie scattering

DANIEL MARTIN – IWMA YOUNG TALENT AWARD

Theoretical Mie scattering

- Reasons Mie Scattering can not be used
 - Type of radiant source: point source vs sheet source
 - Aka single ray vs multiple rays entering the droplet
 - Single wavelength size vs large spectrum
 - Monodispersed vs polydispersed water mist cloud
 - The location where the ray(s) enters into the droplet

JENSEN HUGHES

Advancing the Science of Safety

(7)

Experimental setup

- Danfoss Water Mist System
 - Power Pack PPH 6.3 with a piston pump (4 L/min)
 - Single nozzle: 1910 Hollow Cone Nozzle (0.42 L/min)
 - Operating pressure: 100 Bars
 - Single fluid spray
 - D_v0.5's = 28-35, 40, 48 μm

https://stateofgreen.com/en/profiles/danfoss/solutions/fire-suppression-with-water-mist-in-microbiological-laboratory

22/09/2016

Experimental setup

- Overall Structure
 - Radiant panel and diffusion flame heat sources
 - Adjustable super-structure

Experimental setup

Experimental setup

MOLENNASTER OF SCIENCE

FIRES

Results (radiant panel)

17

Advancing the Science of Safety

Results (diffusion line burner)

Results (straight line of sight)

- Attenuation levels for both sources follow the water concentration trend until 500 mm
- Droplet size drives attenuation levels past 500 mm
- More radiation is blocked from the line burner because of the higher number of wavelength sizes being emitted

WOLLEN ALL

CINEERING

Uncertainties affecting the results

- Misalignment between the heat source, centerline of the spray, and the heat flux gauge
- Radiation levels measured fall below the known calibration curve of the heat flux gauge
- Equipment reading uncertainties
- Water mist/heat source interaction

40

35

64 5 18 SR#56365 calibration data

10

12

Uncertainties affecting the results

- Water mist/heat source interaction at 500 and 700 mm below the nozzle
- Flame size decreased, thus reducing the incident heat flux and artificially increasing the attenuation

WOLTEN OF SC

FIRES

Possible future work

- Investigate the influence of environmental conditions on the spray
- Integration of multiple nozzles
- Larger diffusion flame to increase separation distances
- Various nozzle orientations
- Incorporating various high pressure nozzle types

Conclusion

- Very difficult to predict attenuation for all systems from one test:
 - Pressure, nozzle flow rate, nozzle type, number of nozzles, nozzle orientation, environmental conditions, etc.
- More radiation is blocked from a diffusion flame type source than a radiant panel
- Attenuation is not the same for all positions along the vertical axis
- Droplet size, water concentration, and droplet residency time play a key role in attenuation levels

Thank you!

References

- [1] Sunahara, H., Ishihara, T., Matsuyama, K., Sugahara, S., Morita, M. "A study on relation between heat release rate and radiative heat flux of wood crib burning during water discharge" (2010) Journal of Environmental Engineering, 75 (658), pp. 1009-1017.
- [2] Reischl, U. "Water fog stream heat radiation attenuation" (1979) Fire Technology, 15 (4), pp. 262-270.
- [3] Dembele, S., Wen, J.X., Sacadura, J.-F. "Experimental study of water sprays for the attenuation of fire thermal radiation" (2001) Journal of Heat Transfer, 123 (3), pp. 534-543.
- [4] Heselden, A.J.M., A Hinkley, P.L. "Measurements of the transmission of radiation through water sprays" (1965), Fire Technology, 1 (2), pp. 130-137.
- [5] G. Parent, P. Boulet, S. Gauthier, J. Blaise, A. Collin, Experimental investigation of radiation transmission through a water spray, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 97, Issue 1, January 2006, Pages 126-141.
- [6] Husted, B P. "Experimental measurements of water mist systems and implications for modelling in CFD" (2007) PhD Thesis, Lund University, Sweden
- [7] Murrell, J V, Crowhurst, D, Rock, P. "Experimental study of the thermal radiation attenuation of sprays from selected hydraulic nozzles" Halon Options Technical Working Conference 1995, Albuquerque, NM USA. www.nist.gov
- [8] Drysdale, Dougal. An Introduction to Fire Dynamics. 3rd. West Sussex: John Wiley & Sons, Ltd., Publications, 2011.
- [9] Karlsson, B and J Quintiere. *Enclosure Fire Dynamics*. Boca Raton: CRC Press LLC, 2000.

Thank you!

Contact

Daniel A. Martin, E.I. +1 410-737-8677 dmartin@jensenhughes.com

For More Information Visit www.jensenhughes.com

Advancing the Science of Safety