

Inhibition Effectiveness of Water Mist on Ignition of Propane/Air Mixture

Keisuke Nakahara¹, Chihong Liao², Hiroyoshi Naito³, Akira Yoshida⁴

¹ Graduate School of Tokyo Denki University ² Morita Holdings Corporation

- ² Morita Holdings Corporation
- ³ Fire and Disaster Management Agency
- ⁴ Tokyo Denki University

- Introduction
- Experimental Apparatus
- Results
- Conclusions

Minimum ignition energy is a good indicator of the effectiveness of an inhibiting agent to prevent explosion.

- 1. Determine which parameter is essential for prevention of ignition, net discharge energy, energy density or volumetric energy release rate.
- 2. Inhibition effectiveness of water mist for ignition of propane/air mixture.

- Net Dicharged Energy: E_i [J] E_i : Net discharged energy [J]
- Energy Density: q_i = E_i/V_k [J/m³]
 E_i: Net discharged energy [J]
 V_k: Flame kernel volume [m³]
- Volumetric Energy Release Rate: q_i = E_i/V_kt_d [W/m³]
 E_i: Net discharged energy [J]
 V_k: Flame kernel volume [m³]
 t_d: Discharge duration [s]

Experimental Apparatus

Ignition System and Electrodes

TDU TOKYO DENKI UNIVERSITY

Schlieren Images

(a) air, (b) $\varphi = 1.3$ no ignition, (c) $\varphi = 1.3$ ignition

TDU TOKYO DENKI UNIVERSITY

When a fine resistance wire was fused electrically, net discharged energy E_i is expressed by

$$\Delta E = E_c - E_r = E_i + E_h + E_m + E_{loss}$$

$$\therefore E_i = \Delta E - (E_h + E_m + E_{loss})$$

- ΔE : Discharge energy
- E_c : Charge energy
- E_r : Residual energy
- E_h : Sensible enthalpy to heat up the wire to the melting point
- E_m : Latent heat of fusion
- E_{loss} : Additional heat loss by heat transfer to terminals and radiation

Ignition probability $P_i(x_i)$ can be expressed by the logistic function and is given by

$$P_i(x_i) = \frac{1}{1 + exp(-\beta_0 - \beta_1 x_i)}$$

 β_0 and β_1 are coefficients estimated by maximizing the likelihood function. The likelihood function is given by

$$L = \prod_{i=1}^{n} P_i(x_i)^{y_i} (1 - P_i(x_i))^{1-y_i}$$

 x_i : Net discharged energy [J], Energy density [J/m³], Volumetric energy release rate [W/m³] y_i : Ignition probability for i^{th} test

Net discharged energy $E_i = \Delta E - (E_h + E_m)$

• Minimum net discharged energy *E*_{*i*,*min*} for ignition

$$d = 42 \ [\mu m] \rightarrow E_{i,min} = 19 \ [mJ]$$

$$d = 50 \ [\mu m] \rightarrow E_{i,min} = 40 \ [mJ]$$

Ignition probability changes with wire diameter, when the ignition probability is expressed as a function of net discharged energy.

Energy density
$$q = E_i / V_k$$

- Ignition probability is shown as a function of the energy density, and the ignition probability for 42 µm corresponds to that for 50 µm.
- If the discharge duration is constant, the ignition probability can be expressed uniquely by the energy density.

Effect of discharge duration

Volumetric energy release rate $\dot{q} = E_i / V_k \tau_d$

- Ignition probability decreases with decrease of the discharge duration.
- When the ignition probability is
 expressed by volumetric energy
 release rate, ignition probability
 depends on the discharge
 duration.

Effect of discharge duration

Energy density
$$q = E_i / V_k$$

- Ignition probability collapses on one curve independently of the discharge duration.
- Ignition probability as a function of energy density is not affected by discharge duration.

Function of ignition probability

Effect of Water Mist on Ignition $\varphi = 1.3$

- When water mist is added to the mixture, ignition probability decreases with water mist addition and minimum ignition energy density increases.
- Water mist absorbs thermal energy delivered from the heated wire.

- When water mist is added to the mixture, ignition probability decreases with water mist addition and minimum ignition energy density increases.
- Inhibition effectiveness of water mist on ignition is greater for lean side than for rich side.

Inhibition effectiveness of water mist on ignition of propane/air mixture was investigated experimentally.

- 1. The energy density is the most suitable to express ignition probability.
- 2. When water mist is added to the mixture, ignition probability decreases and minimum ignition density increases.
- 3. Inhibition effectiveness of water mist on ignition is greater for lean side than for rich side.

Thank you for your kind attention.

Note

Discharge duration

16th International Water Mist Conference (21-22/Sep/2016, Vienna)

20/18

Relation of E_i and Discharge Duration

16th International Water Mist Conference (21-22/Sep/2016, Vienna)

TOKYO DENKI UNIVERSIT

Relationship of E_i and l

Energy density q_i is the total energy per unit volume to be supplied to the heat wire. Energy density q_i is expressed by

$$E_i = V_k q_i$$

$$\therefore q_i = E_i / V_k$$

- q_i : Energy density [J/m³]
- E_i : Net discharge energy [J]
- V_w : Flame kernel volume [m³]

Volumetric energy release rate \dot{q}_i is the total energy per unit volume and unit time to be supplied to the heat wire. Volumetric energy release rate \dot{q}_i is expressed by

$$\dot{q_i} = E_i / V_k t_d$$

 \dot{q}_i : Volumetric energy release rate [W/m³]

 E_i : Net discharge energy [J]

- V_k : Flame kernel volume [m³]
- t_d : discharge duration [s]

Characteristics of water mist

— Three extinguish effect —

- Cooling effect of the sensible heat and latent heat
- Dilution effect by reduction in oxygen and fuel concentrations
- Chemical effects owing to the reactivity of water vapor that may alter some reaction paths

Schlieren Optical System

Experimental Apparatus	
LED Light	SLG-55 (REVOX) Luminous flux : 2100 [lm]
High Speed Camera	FASTCAM Mini AX100 (Photron) Frame rate : 37500 [fps] Resolution : 256 × 256 [pixel]

Image of schlieren photography

Schlieren Video

Nichrome diameter : d = 70 [µm]

Capacitance : $C = 2200 [\mu F]$

Charge voltage : $E_c = 20[V]$

Equivalence ratio : $\varphi = 1.3$

Net discharge energy : E_i 98.7[mJ]

Frame rate : 37500 [fps]

Relation of MIE and Spark duration

Ref : Jilin Han, Hiroshi Yamashita, Naoki Hayashi, Combustion and Flame 157 (2010) 1414-1421

Relation of E_{min} and Equivalence Ratio **TDU**

Ref : Lewis, B. and von Elbe, G., Combustion, Flames and Explosion of Gases (Second Ed.), Academic Press Inc. (1961).

- Minimum Ignition Energy: E_i (J) E_i : Discharge Energy (J)
- Minimum Volumetric Energy Release Rate: E_i/V_kτ_d (W/m³)
 E_i: Discharge Energy (J)
 V_k: Flame Kernel Volume (m³)
 τ_d: Discharge Duration (s)
- Minimum Energy Density: E_i/V_k (J/m³)
 E_i: Discharge Energy (J)
 V_k: Flame Kernel Volume (m³)

