17th International Water Mist Conference 25 - 26 October 2017 Rome, Italy

Water-mist systems for fire-protection of saunas

Paolo E. Santangelo¹, Luca Tarozzi², Massimiliano Bettati², Paolo Tartarini¹

¹Dipartimento di Ingegneria "Enzo Ferrari" Università degli Studi di Modena e Reggio Emilia, Modena, Italy ²Bettati Antincendio S.r.l., Reggio Emilia, Italy

Motivations

- Increasing popularity of saunas in the built environment (e.g., hotels, recreation centers, resorts)
- Fire hazards:
 - timber benches
 - ➤ fabric (e.g., linen, towels)
 - > chemicals (e.g., detergents)
- Potentially high environmental temperatures (~ 90 °C), electrical heaters, incandescent stones
- Natural/forced ventilation that may emphasize fire evolution and spread
- Lack of knowledge about active fire-protection systems in the open literature
- Buildings already endowed with fire-protection systems vs. unprotected buildings (stand-alone solutions required)
- Support and inspiration from industry

from: www. starpool.com

from: www.burgoynes.com

Sources:

- I. RC50. Fire Safety in the Construction and Use of Saunas, United Kingdom: Fire Protection Association (FPA) on behalf of RISC Authority, 2009
- II. G. Howe, S. Lloyd, Application of water mist to saunas, International Fire Professional, October 2014, pp. 15-18.
- III. Zurich Insurance Group, Risk Topics, Fixed fire protection Water mist – Saunas, 2015
- Generic reference to standard NFPA 750 for water-mist systems
- Use of a wood crib and a heptane pool as the ignition source and accelerant respectively
- Pre-heated sauna mock-up with forced ventilation
- Comparison between a sprinkler and a watermist supression system

from: www.flamefastusa.com

from: Howe and Palle, IWMC 2014

3 of 23

Technical Recommendations

Active fire-protection systems as those based on water-mist technology are to be combined with:

- Suitable and adequate passive fireprotection measures (e.g., fire-rated separations)
- Fire alarms (e.g., heat and/or smoke detectors)
- Use of automatically-operated fire dampers in any ventilation duct
- Measures against excessive drying out of the timber linings
- Requirements for heating and electrical installations

4 of 23

Ostia: incendio in una palestra in via Mare dei Sargassi, lunga colonna di fumo

Un incendio di vaste dimensioni si è sviluppato all'alba in una nota palestra di Ostia, la Virgin, in via Mare dei Sargassi. L'area che sta bruciando sarebbe di circa 6000 metri

In via Mare dei Sargassi, nelle vicinanze dell'ospedale G.B.Grassi, a Ostia è andata a fuoco nella notte una nota palestra: la Virgin.

To grasp the disaster:

https://www.youtube.com/watch?v=GQcF8MsI18g

l'Adige.it

I più letti di oggi

"Si stanno sparando", rinvenuti due bossoli in strada: indaga la polizia

Ostia: rapina alle Poste il giorno del pagamento delle pensioni, due arresti

Elezioni Ostia, veleni nel centrodestra: Meloni mette alla porta Alemanno e Storace

Immobilismo grillino sui Punti Verde Qualità: ferite sul territorio e concessionari danneggiati

Fiamme nel primo pomeriggio di ieri nel centro benessere dell'hotel Madonnina di Soraga.

5 of 23

IWMC 2017

Water-mist systems for fire-protection of saunas P.E. Santangelo, L. Tarozzi, M. Bettati, P. Tartarini

Main scope:

Development, design and implementation of a water-mist, stand-alone system dedicated to sauna fire protection

Objectives:

- Challenging a promising, discharge-based system against this fire scenario
- Identifying the main structural and physical mechanisms governing this fire configuration and water-mist control and suppression performance
- Development of a testing procedure to quantitatively evaluate suppression/extinction in sauna scenarios
- Evaluating water-mist capabilities within a real-scale facility and throughout an experimental test series towards a worst-case scenario

Challenge:

Need for consolidating a set of variable parameters – mainly related with geometric configuration and ignition – within a limited number of tests

System Concept

An actual water-mist system for sauna fire protection consists of:

- High-pressure delivery unit that includes water-filled cylinders and inert gas cylinders to allow > 100 bar initial pressure
- Open water-mist nozzle set and stainless steel piping
- Detection system, notably heat detectors operating at fixed temperature threshold and connected to a control unit
- Fire alarm system including sounders and beacons
- Remote signaling of alarm, discharge and fault

Actual Installation

Moncalieri (Italy) Fitness center by Virgin Active

8 of 23

IWMC 2017

Water-mist systems for fire-protection of saunas P.E. Santangelo, L. Tarozzi, M. Bettati, P. Tartarini

Discharge System and Limitations

CODE: NWMO014 Bettati Antincendio S.r.l. MANUFACTURER: **K-FACTOR:** 1.4 L min⁻¹ bar^{-0.5} (overall) 7 (6 peripheral, 1 central) pressure-swirl **INJECTORS:** $3.6 \times 3.6 \text{ m}$ (1.8 m from the wall) AREA COVERAGE: 2.4 m INSTALLATION HEIGHT: **OPERATIVE PRESSURE:** 150 bar descending (nitrogen-pressurized) **CAPACITY OF CYLINDERS:** 80 L (each) No. OF WATER CYLINDERS: 3 No. OF N₂ CYLINDERS: MAX. COMPARTMENT AREA: $25 \, {\rm m}^2$ > 10 min DISCHARGE TIME:

The released spray was previously characterized by Santangelo (Exp Therm Fluid Sci 34 (2010) 1353-66 and J Therm Sci 21 (2012) 539-48) in terms of drop-size distribution, initial velocity field and cone angle.

Standard CEN/TS 14972:2011

''Fixed firefighting systems – Watermist systems – Design and installation''

No specific guidance provided for sauna fires

Annex B

'Guidelines for developing representative fire test procedures for watermist systems''

- Evaluation of fire hazard;
- Evaluation of the compartment conditions;
- Performance objectives;
- > Anticipated worst-case scenario(s).

PASS/FAIL criterion: SUPPRESSION

Experimental Facility

Plan view of the test chamber: a) ignition source at the corner behind benches (configuration C1); b) ignition source at the center of the wall behind the benches (configuration C2). WMN: water-mist nozzle location; Riv: heat-detector (by *Kidde-Fenwal Inc.*) location

Test- chamber height	L1	L2	d	d_riv	D
2.4	5.9	2.3	3.6	1.0	L2/2 in all tests but the last one; d/2 in the last test

11 of 23

Ignition Source

SCOPE: Resembling an electric-heater fire

IWMC 2017

DESIGN CHOICE:

Wood-crib (2.9 kg) fire, accelerated by a manually-activated heptane (0.24 l) pool fire

Sketch (a) and photo (b) of wood crib and accelerant container

Evaluation of **peak Heat Release Rate** (HRR) from the wood-crib fire as an estimate of fire size in the compartment:

$$HRR = MLR \cdot \Delta h_c = C \cdot \left(\frac{s}{H}\right) \left(\frac{m_i}{t}\right) \cdot \Delta h_c \approx 230 \text{ kW}$$

MLR: mass-loss rate, Δh_c : wood heat of combustion (= 12 MJ kg⁻¹), C: empirical constant (= 7.44 × 10⁻⁴), S: clear spacing between sticks in the same layer (= 50 mm), *H*: crib height, m_i : initial mass, *t*: stick thickness

Xu Q., Griffin G.J., Jiang Y., Bicknell A.D., Bradbury G.P., White N., J Therm Anal Calorim 91 (2008) 355-8

INIMORE

Temperature and Mass-Loss Evaluation

Set of 7 thermocouples (type K, 0.5 mm wire diameter, 1 Hz acquisition frequency):

- T_gas (3 probes): gas temperature 76 mm below the ceiling, at the symmetry axis of the ignition source, at the heat-detector location and symmetric to Riv
- T_crib: gas temperature at the **center of the ignition-source** top surface
- T_sts: surface temperature of the timber bench bottom surface, at the symmetry axis of the ignition source
- T_clg: surface temperature at the **ceiling** and at the ignition-source symmetry axis
- T_rad: associated with hot-plate thermometer and located at 500 mm height from the floor, close to the container exit

Load cell to measure damage ratio $(m_i - m_f)/m_i$ of wood crib and timber benches

The **bench damage ratio** was selected as the quantitative representation of the chosen **pass/fail** criterion.

As for **moisture content** of timber benches, it was monitored before each to have it **lower than 5%**; mass loss was measured after benches were let dry out.

HINT FOR THE FUTURE:

Measuring the moisture content **right after discharge** to evaluate quantitatively the consequences on timber benches, even those due to false alarms.

13 of 23

Hot-plate thermometry was employed to evaluate incident radiant heat flux as representative of HRR and overall fire evolution (Ingason H, Wickström U., *Fire Saf J* 42 (2007) 161-6).

Notably, the plate was placed in front of the presumed fire location, between the wood crib and the involved bench. So, it was set at **0.6 m** height from the floor and at the corner next to the crib in both configurations.

$$q = \frac{\varepsilon_{PT}\sigma T_{PT}^4 + (h_{PT} + K_{cond})(T_{PT} - T_{\infty}) + \rho_{st}c_{st}s(\Delta T_{PT}/\Delta t)}{\varepsilon_{PT}}$$

 ε_{PT} : plate-thermometer emissivity, σ . Stefan-Boltzmann constant, T_{PT} : plate-thermometer temperature, h_{PT} : convective heat-transfer coefficient, K_{cond} : conduction correction factor, T_{∞} : room temperature, ρ_{st} : steel density, c_{st} : steel specific heat capacity, s: steel plate thickness, t: time

14 of 23

Test Matrix and Initial Conditions

The following parameters were identified and varied through the test series:

- Location of the ignition source •
- Initial room temperature (T_i) •
- Discharge activation time (τ_{act} , heat-detector threshold @ 165 °C) •
- Ventilation $(0.7 \times 1.9 \text{ m door})$ •
- Distance between the nozzles and the wall behind benches (D) •
- Presence of drywall boards attached to the back of the benches ٠
- Distance between benches and the wall behind (δ) ٠

Test no.	Ignition source	<i>T_i</i> [°C]	τ _{act} [S]	Ventilation	<i>D</i> [m]	Drywall boards	δ [mm]
1	corner (C1)	20 - 30	alarm + 5	NO	1.15	NO	0
2	center (C2)	20 - 30	alarm + 5	NO	1.15	NO	0
3	center (C2)	20 - 30	180	NO	1.15	NO	0
4	center (C2)	20 - 30	alarm + 5	NO	1.15	NO	0
5	center (C2)	20 - 30	alarm + 5	NO	1.15	YES	250
6	center (C2)	> 80	alarm + 5	NO	1.15	NO	0
7	center (C2)	> 80	alarm + 5	YES	1.80	NO	0

Pressure and Temperature History

Example of the whole temperature/pressure dataset, with a reference to **wood-ingnition temperature** (Babrauskas V., Interflam 2001, pp. 71-88)

Temperature and Pressure Trends (Test no. 2 – 4)

17 of 23

IWMC 2017

Water-mist systems for fire-protection of saunas

Temperature and Pressure Trends (Test no. 5 – 7)

UNIVERSITÀ DEGLI STUDI DI

IWMC 2017

Water-mist systems for fire-protection of saunas

Incident Heat Flux

UNIMORE

IWMC 2017

Water-mist systems for fire-protection of saunas

P.E. Santangelo, L. Tarozzi, M. Bettati, P. Tartarini

Photo Shooting

IWMC 2017

Water-mist systems for fire-protection of saunas P.E. Santangelo, L. Tarozzi, M. Bettati, P. Tartarini

Summary of Experimental Outcomes

Ignition source at the center Unexpected smoldering T _i						$T_i \uparrow T_i$	↑ + D ↑
Ignition source in the co	rner	Dela	iyed $ au_{act}$	Dryw	all boards	5 ve	+ ntilation
	Test no. 1	Test no. 2	Test no. 3	Test no. 4	Test no. 5	Test no. 6	Test no. 7
Heat-detector activation time [s]	91	100	107	143	179	107	129
Discharge activation time [s]	96	105	182	148	184	112	134
Smoldering materials at the end	NO	NO	NO	YES	NO	NO	YES
Overall suppression	YES	YES	YES	YES	YES	YES	YES
Wood-crib fire extinction time [s]	267	284	226	273	256	311	327
Initial wood-crib mass [g]	2813.2	2745.5	2750.5	2849.5	2907.5	3230.0	3175.5
Wood-crib damage ratio	12%	14%	11%	7%	12%	5%	12%

43.5

3%

NM

NM

NM: Not Measured

Bench damage ratio

Initial bench mass [kg]

41.5

1%

IWMC 2017

NM

NM

43.0

0%

43.0

1%

43.5

1%

- A water-mist system was designed and tested as inspired by recognized standards for application in sauna scenarios
- ➤ The proposed system was capable of controling and suppressing the fire in all tests (timber-bench damage ratio ≤ 3%)
- The ignition-source location, the presence of drywall boards behind timber benches and the presence of a gap between benches and the wall behind did not prove critical in determining system performance
- A heat-detector-governed discharge was effective in containing damage ratio, with respect to a fixed, longer activation time
- Initial room temperature does not appear to be crucial in determining system performance
- The worst-case scenario showed that natural ventilation and a larger nozzle-tobench distance may imply re-ignition and smoldering materials at the end, yet damage ratio did not vary with respect to the other tested conditions
- The developed water-mist system may be considered suitable for enclosures endowed with self-closing doors

Acknowledgments and Q&A

Under the auspices of:

Big thanks to:

- Mr. Francesco Dignatici for technical advising
- Bettati Antincendio S.r.l. staff for their support throughout the experiments

Thanks for your kind attention. Questions?

Dr. Paolo E. Santangelo

Dipartimento di Ingegneria "Enzo Ferrari" Università degli Studi di Modena e Reggio Emilia

Via P. Vivarelli 10 41125 Modena, Italy

Tel.: + 39 059 205 6101 Fax: +39 059 205 6129 E-mail: paoloemilio.santangelo@unimore.it Dr. Luca Tarozzi

Bettati Antincendio S.r.l.

Via B. Disraeli 8 42124 Reggio Emilia, Italy

Tel.: + 39 0522 369728 Fax: +39 0522 791052 E-mail: tarozzi@bettatiantincendio.it

IWMC 2017

Water-mist systems for fire-protection of saunas P.E. Santangelo, L. Tarozzi, M. Bettati, P. Tartarini