Efficiency of water mist turbines in stationary fire prevention systems for hangars and recycling centres

25th Oct 2017 – Rome Dr. Ing. Francesco Fritz

WHO IS EMICONTROLS?

worldwide leader in turbine based systems

4

WHAT IS A FIREFIGHTING TURBINE?

Firefighting Turbine

Machine spraying watermist (or any fluid) up to 70-80m distance

The watermist has much higher cooling and extinguishing power that the traditional water based firefighting

© EmiCont

Benefits of Turbine Aided Firefighting – TAF™

quick knock-down of flames and fire

reduced employment of water and foam

surrounding effect on objects

TAF TURBUNE AIDED FIREFIGHTING

TAF[®] - Turbine Aided Firefighting

- High Water mist flow
 from 300 I/min to 1.500-4.800 I/min
- Medium
 Water, salt water, Foam, Retarder, Gel
- High manoeuvrability
 (360° rotation; -20°/+50° tilting)
- Power: electric or oil-hydraulic

Adjustable spray pattern

Fine water mist mode Max efficiency 0 to 1.500 l/min

High flow mode water mist 0 to 3.500 l/min

High flow mode max throw distance 0 to 3.500 l/min

WHAT IS THE EFFICIENCY OF TAF?

Testing in IdF Magdeburg

fire fighting systems

© EmiControls www.emicont

Measurements in IdF Magdeburg

Droplet size measured with Phase Doppler Particle Analyzer

Areas of Aerosols

Total area inversely proportional To the diameter of droplets

For example:

- 1 I water sprayed in droplets of:
- 1 mm diameter \rightarrow 6m²
- 100 μ m diameter \rightarrow 60m²
- 10 μ m diameter \rightarrow 600m²

$$A_{H_2O} \sim \frac{1}{d}$$

Test result: HHR vs. time

Water mist turbine (red) vs. traditional monitor nozzle (yellow)

Efficiency of Turbine

- \blacktriangleright Rate of abatement of Trichlorosilane with Water-mist Turbine > 90%
- Identification of Concentration gas vs. Concentration water-mist
- ➢ No significant differences observed from -5℃ to +30℃
- \blacktriangleright Flames control time < $\frac{1}{2}$ compared to traditional nozzles

TESTS FOR HANGAR

Test configuration

Test configuration

Versuchsreihen

Test #	Pan size (m²)	Fuel (I)	Water mist flow (I/min)	Extinction fluid	Preburnig (s)
1	1	10	700	water	40
2	3	30	700	water	40
3	3	30	700	3% foam	40
4	3	30	700	3% foam	40
5	6	78	700	3% foam	40
6	9	60	700	3% foam	40
7	12	96	700	3% foam	40
8	15	96	700	3% foam	40

Max T and Max radiation

during pre-burning

Extinction time

for 8 test runs

TESTS FOR DISTRICT HEATING PLANTS

District heating plants

District heating plants

Test in with Thermo-oil

COOLING

District heating pla

Test in with Thermo-oil

FIRE EXTINCTION

TESTS FOR ANCIENT TOWNS

The problem

The concept

Video 4 Video 10

www.emicontrols.com

by TechnoAlpin