

Measurement and Simulation of Suppression Effects in a Buoyant Turbulent Line Fire

James P. White

International Water Mist Conference, Rome, Italy October 26, 2017

Acknowledgments

U.S. National Science Foundation (GOALI Award #1236788)

FM Global

- B. Yu, M. Chaos, N. Ren, Y. Wang
- United Technologies Research Center
 - J. Sheffel, V. Sankaran, M. Corn, M. Colket
- Department of Fire Protection Engineering
 - P. Sunderland, A. Trouvé, A. Marshall
 - E. Link, S. Vilfayeau, T. Myers, S. Jordan
 - T. Western, D. Muller

Introduction: Motivation

- How to establish performance-based design of fire suppression systems?
 - Primary issues
 - Full and scaled experiments can be prohibitively costly, with limited utility
 - Complexity of suppression phenomena hinders model development
 - Currently, no validated analytical framework to predict suppression performance
 - Limited accuracy of practical CFD treatments
 - Limited data for model validation

Introduction: Objective

Experiment (Turbulent Line Burner, TLB)

- Develop a canonical lab-scale facility for the investigation of fire suppression phenomena
- Provide detailed and well-characterized measurements to support the development and validation of suppression models

Simulation (FDS, FireFOAM)

- Assess the performance of current suppression models via comparison with measurements
- Identify recommendations for model improvement

Experiment: Configuration

- Turbulent Line Burner (TLB)
 - Desired flame characteristics:
 - Line-fire geometry
 - Buoyancy driven
 - Fully turbulent
 - Fuel
 - Methane (CH₄) 1.00 g/s (6.0 cm/s)
 - ~ 50 kW total heat-release rate

Experiment: Configuration

Co-flowing Oxidizer

- Desired oxidizer characteristics:
 - Steady, uniform flow
 - Controlled suppressant delivery
 - Minimally impact flame entrainment
- Total flow 55-85 g/s (16-25 cm/s)
- Ceramic fiberboard blockage around fuel port

N₂ Suppression: Configuration

Nitrogen Suppression

- N₂ gas via pressurized Dewar
- 0-40 g/s N₂ (X₀₂ : 0.21-0.11)
- Oxygen anchor
 - \geq 0.08 g/s O₂ (~ 2% combustion)
 - Prevents liftoff extinction

9/2017

MTROGEN NITROGEN N

N₂ Suppression: Results

Flame Images

N₂ Suppression: Results

Combustion Efficiency

10/19/2017

Mist Suppression: Configuration

- Mist Suppression
 - Ultrasonic mist generators
 - 0-5.5 g/s mist (Y_{wm} : 0-0.10)
 - Droplet size, *SMD* = 6.6 µm
 - Negligible injection momentum

Mist Suppression: Results

Flame Images

Mist Suppression: Results

Flame Images

(N₂ dilution)

Mist Suppression: Results

Combustion Efficiency

Conclusions

Highlights

- Novel and canonical facility for study of turbulent fire suppression phenomena (N₂ & mist)
- Non-intrusive integral measurements provide insight into suppression processes
- Measurements available in MaCFP database*

Future Work

 Continued fire modeling work on simulating water mist suppression

Thank You!