

Comparative study of the flow within water mist and sprinkler fire protection systems by means of CFD

A. Cablé, K. Chetehouna, and N. Gascoin

INSA Centre Val de Loire, PRISME Laboratory, 18020 Bourges, France Department of Fluids, Mechanics, Materials and Energy

> 17th International Water Mist Conference October 25-26, 2017, Barceló Aran Mantegna Hotel, Rome, Italy

Context and objectives

Calculation of the air/water flow within water-mist and sprinkler systems

Usual procedure (NFPA 750):

- Hazen-Williams (low-pressure: <12bar, 175psi)
- Darcy–Weisbach (intermediate and high pressure: >12 bar, 175 psi)
- **Pneumatic calculation procedure** (gas/water flow)

Other possibility: Navier-Stokes equations and turbulence modelling by means of Computational Fluid Dynamics (CFD)

Context and objectives

Calculation of the air/water flow within water-mist and sprinkler systems

Usual procedure (NFPA 750):

- Hazen-Williams (low-pressure: <12bar, 175psi)
- Darcy–Weisbach (intermediate and high pressure: >12 bar, 175 psi)
- **Pneumatic calculation procedure** (gas/water flow)

Other possibility: Navier-Stokes equations and turbulence modelling by means of Computational Fluid Dynamics (CFD)

Detailed study (CFD) on Dry-pipe Low pressure Water-mist system and Sprinkler system

• Impact on valve activation time ?

3

- Impact on delay to obtain steady-state water flow ?
- Location and size of the air pockets ?

Modelled system

Outlet:

Modelled system

Sprinkler head

Required water density defined according to hazard : 10,2 l/min/m² -186 m² => minimum pump flow = 1897.2 l/min

K115 (8.0 US) Sprinkler head 115 l/min/bar^{1/2} Orifice size: 14mm

Water-mist nozzle

Relationship between drop size distribution and extinguishing capacity of water mist not straight-forward

Assumptions for this study: K43.2 (3.0 US) Water-mist nozzle 43.2 l/min/bar^{1/2} Orifice size: 8.33mm Low pressure (<12bar) water-mist system: identical distribution piping and pump

Modelling approach: resolved equations

OpenFOAM (CFD opensource code/C++ library)

Navier-Stokes equations for a turbulent, isothermal, two-phase flow.

Liquid phase : water (incompressible) ; Vapor phase : air (compressible: perfect gas)

VOF (volume of fluid) phase-fraction based interface capturing approach.

1. Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla (\rho U) = 0 \qquad \begin{array}{l} \rho = \alpha_l \rho_l + \alpha_v \rho_v \\ U = \alpha_l U_l + \alpha_v U_v \end{array}$$

2. Momentum equation

6

$$\frac{\partial \rho U}{\partial t} + \nabla (\rho U U) = -\nabla (P_{rgh}) - gh\nabla \rho + \nabla \tau + \rho g + F_s$$

3. Energy equation

$$\frac{\partial(\rho T)}{\partial t} + \nabla (\rho UT) - \nabla (K\nabla T) + \left[\nabla (PU) + \frac{\partial(\rho K)}{\partial t} + \nabla (\rho UK)\right] \left(\frac{\alpha_l}{c_{vl}} + \frac{\alpha_v}{c_{vv}}\right) = 0$$

4. Phase continuity equation $\frac{\partial(\alpha_l)}{\partial t} + \nabla (\alpha_l U) + \nabla (\alpha_l \alpha_v U_r) = \alpha_l \alpha_v (\frac{\psi_1}{\rho_l} - \frac{\psi_v}{\rho_v}) \frac{DP}{Dt}$

Modelling approach: resolved equations

OpenFOAM (CFD opensource code/C++ library)

Navier-Stokes equations for a turbulent, isothermal, two-phase flow.

Liquid phase : **water** (incompressible) ; Vapor phase : **air** (compressible: perfect gas) VOF (volume of fluid) phase-fraction based interface capturing approach.

1. Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla (\rho U) = 0 \qquad \begin{array}{l} \rho = \alpha_l \rho_l + \alpha_v \rho_v \\ U = \alpha_l U_l + \alpha_v U_v \end{array}$$

2. Momentum equation

$$\frac{\partial \rho U}{\partial t} + \nabla (\rho U U) = -\nabla (P_{rgh}) - gh \nabla \rho + \nabla \tau + \rho g + F_s$$

+ 2 transport equations for turbulence modelling (k-ε realizable with wall-law)

> Timesteps: 1e-5s to 1e-4s (CFL condition <0.5)

3. Energy equation

$$\frac{\partial(\rho T)}{\partial t} + \nabla (\rho UT) - \nabla (K\nabla T) + \left[\nabla (PU) + \frac{\partial(\rho K)}{\partial t} + \nabla (\rho UK)\right] \left(\frac{\alpha_l}{c_{\nu l}} + \frac{\alpha_{\nu}}{c_{\nu \nu}}\right) = 0$$

4. Phase continuity equation $\frac{\partial(\alpha_l)}{\partial t} + \nabla (\alpha_l U) + \nabla (\alpha_l \alpha_v U_r) = \alpha_l \alpha_v (\frac{\psi_1}{\rho_l} - \frac{\psi_v}{\rho_v}) \frac{DP}{Dt}$

Modelling approach: pump and nozzle/sprinkler head routines

Modelling approach: 2D assumption

Tank of a given volume

Analytic calculations based on system volume V

- + : low computational cost
- -: water distribution in the system not available

2D simulations on simplified geometry

+: more precise, and water distribution available

-: friction underestimated, gravity neglected (no hydrostatic pressure) 3D simulations with complete system details

+: quantitative results with full details
-: very high computational cost

Retained Choice

Accuracy *オ* Computational cost *オ*

ע Accuracy Computational cost ע

Comparative study flow for a simplified geometry (2D + 1cell in the Z direction)

9

Geometry and mesh

10

Geometry

Tetrahedral mesh with viscous layer (~300k cells)

Results : valve activation time

• Patm reached in the system after 20s for K115 Sprinkler vs more than 60s for K43 Nozzle

11

Results : valve activation time

2s delay between detection and valve activation

Results : valve activation time

2s delay between detection and valve activation

13

Results : valve activation time

2s delay between detection and valve activation

Results : valve activation time

	Accelerator	Detection time (s)	Valve activation time (=detection time +2s)	Pressure at valve activation (bar rel)
Water-Mist (K43)	W/O	38.02	40	0.57
	MECH	9.63	11.6	1.74
	ELEC	0.26	2.3	1.84
Sprinkler (K115)	W/O	7.94	9.9	0.36
	MECH	2.23	4.2	1.32
	ELEC	0.23	2.3	2.34

• The slower the technology, the larger the difference in valve activation time

• Lower pressure in the system at activation for K115 Sprinkler than for K43 Nozzle

Results : valve activation time

Velocity, mass flow rate and volume flow rate at sprinkler head: illustration of the choked flow modelling

16

K115 Sprinkler: Water fraction after pump activation

Results : Scenario 1 – electronic accelerator

Competition of two phenomena: air compression under moving water front and discharge through open nozzle/sprinkler

Results : Scenario 1 – electronic accelerator

K43 Nozzle: Water fraction after pump activation

Pump facing a lower initial pressure in system for sprinkler than for water-mist
 Pump working at lower pressure for a longer time = higher water flow rate

Results : Scenario 1 – electronic accelerator

- Higher water flow rate: Faster water delivery for sprinkler than for water-mist
- But steady-state reached faster after water delivery for water-mist
- Fewer air bubbles for sprinkler since less air was trapped in the branchlines (lower pressure at activation)

Results : Scenario 2 – mechanical accelerator

K115 Sprinkler: Water fraction after pump activation

Results : Scenario 2 – mechanical accelerator

K43 Nozzle: Water fraction after pump activation

Results : Scenario 2 – mechanical accelerator

Similarly: pump facing a lower initial pressure in system for **water-mist** than for **sprinkler** Pump working at lower pressure for a longer time = higher water flow rate

System volume = $3.642m^3$: Water fraction after pump activation (preaction case: pump activation without nozzle/sprinkler opening)

System volume = 7.284m³ : Water fraction after pump activation (preaction case: pump activation without nozzle/sprinkler opening)

System volume = $7.284m^3$: Water fraction after pump activation

• 64% of system filled with water for at equillibrium for pinit=+2.5bar

Water fraction after pump activation (K80 nozzle/sprinkler)

System volume = 3.642m³ : Water fraction after pump activation (nozzle/sprinkler)

 P_{init}=+2.5bar : psystem >> patm at valve activation -> water follows the path of least resistance and air pockets are blocked in the branchlines = potential unstability

29

Measurements on test bench (scale 1 pipe dimensions)

Objective : validation of the numerical predictions on a 3D configuration

(work in progress)

Schematic diagram of the test bench

30

Test bench: Tree typology

Dry-pipe measurements for $p_{init} = +2.5bar$ (K115 sprinkler)

31

Conclusion and perspectives

- A CFD model was developed, and the flow within dry pipe sprinkler and low pressure water mist systems were assessed on a simplified Tree typology
- The pressure that the pump has to face in the system at activation varies depending on the activation time, technology considered, and orifice diameter
- These parameters impact as well the amount of air trapped in the branches, and the nature of the flow discharged by the nozzle/sprinkler
- SD CFD simulations will be carried out and compared to the experimental measurements on the test bench with scale 1 pipe dimensions

Mesh of the 3D Case

Thank you for your attention