ISO Generator Enclosure Protection

Tim Nichols PhD CPhys FIFireE
Agenda

• Water Mist Fire Fighting
• Generator Enclosure Characteristics
• Generator Fire Characteristics
• Machinery Space – Definition
• BS 8489-1 Fire Test Protocols
• FM 5560 Fire Test Protocol
• BS 8489-1 Detection, Actuation and Control
• BS 8489-1 System Design
• BS 8489-1 Commissioning
Water Mist Fire Fighting

AquaMist
Water Mist Fire Fighting

- Evaporation (Heat extraction) is a function of the surface area of the droplets
- Reducing droplet size increases the surface area
- Increasing the surface area allows for larger cooling effect for a given flow

- Water converts to vapour, expanding by a factor of 1650
- Oxygen is displaced and diluted thereby blocking it from the fuel source
- Higher heat levels cause faster vaporisation

- Fire extinguishment is improved with direct contact of water droplets
- This type of extinguishment is normally associated with standard sprinklers

- Small droplets tend to remain suspended
- The expanding mist will expand and cool the gasses and other fuel in the area
- Blocks the transfer of radiant heat to the adjacent combustibles and pre-wets them
Generator Enclosure Characteristics

AquaMist
Generator Enclosure Characteristics

20’ Container
Payload: 48,600lbs
Tare Weight: 5,015lbs
Cubic Capacity 1,164cu.ft

Exterior Dimensions
L: 20”
W: 8”
H: 8’6”

40’ Container
Payload: 80,350lbs
Tare Weight: 8,337lbs
Cubic Capacity 2,376cu.ft

Exterior Dimensions
L: 40”
W: 8”
H: 8’6”
Generator Enclosure Characteristics

- Class B flammable or combustible liquids
- Flammable liquids under pressure
- Presence of hot surfaces
- Non-tight enclosures
- Ventilated enclosures
- Controlled Access
Generator Fire Characteristics
Generator Fire Characteristics

- Pool and spray fire
- Fast growing fire
- High heat release
Generator Fire Characteristics

Deluge

- Class B
- Hydro-Carbon, high heat release
- Open Nozzles
- All nozzles discharge simultaneously
- Enclosure design area
- Enclosure volume and ventilation key design variables
Machinery Spaces Definition

AquaMist
Machinery Spaces - Definition

Machinery Spaces:
• Rooms with industrial machinery such as oil pumps, oil tanks, fuel filters, generators, transformers vaults, gear boxes, drive shafts, lubrication skids, diesel engine driven generators, and other similar machinery using fuel and/or lubrication fluids with volatilities less than or equal to light diesel.

Special Machinery Spaces:
• Rooms with machinery such as internal combustion engines or other equipment using fuel and/or lubrication fluids with volatilities less than or equal to heptane, and incidental use or storage of limited quantities of flammable liquids of not more than two 55 gal (208 l) drums.

Turbine Enclosure:
• Combustion turbines with or without thermal insulation.

FM 5560 Approval Standard for Water Mist Systems
BS 8489-1 Fire Test Protocols
The Water Mist system is to be:

- Tested in accordance with a recognized test protocol;
- Published in a printed or online record by the testing laboratory.
- Use only components and equipment recognized by a testing laboratory
- Installed by trained personnel in accordance with the manufacturer’s Water Mist system design and installation manual.

A match needs to be established between test conditions on which the testing is based and the conditions of the actual installation

Where a Water Mist system application is not covered by a recognized standard fire test, additional testing might be required to meet the requirements of the authority having jurisdiction (AHJ).
BS8489 – 1 – Fire Test Protocols

Fire Test Protocols

- Robust, reliable, repeatable
- Specific fire load
- Specific risk geometry

Matching the risk to the fire test protocol

- Is the fuel similar to the test protocol (liquid or solid fuel, flash point, combustibility, quantity, arrangement)?
- Is the compartment volume equal to or less than the volume of the test room?
- Is the compartment height equal to or less than the test protocol?
- Is the compartment ventilation conditions similar (presence of fans, forced ventilation, etc., area of openings, position of openings)?
- Are there more obstructions to the distribution of mist than the test protocol?
- Is the duration of protection provided?
BS8489 – 1 – Fire Test Protocols

Deluge / Extinguishment Protocols:

Table 2 – Occupancy and acceptable fire test protocol of Class B and Class F fire hazards operated by a deluge system

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Fire test protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery spaces ≤80 m³</td>
<td>BS 8489-5 or FM 5560:2012, Appendix A</td>
</tr>
<tr>
<td>Machinery spaces ≤260 m³</td>
<td>FM 5560:2012, Appendix C</td>
</tr>
<tr>
<td>Machinery spaces >260 m³</td>
<td>FM 5560:2012, Appendix E</td>
</tr>
<tr>
<td>Combustion turbines ≤80 m³</td>
<td>BS 8489-5 or FM 5560:2012, Appendix B</td>
</tr>
<tr>
<td>Combustion turbines ≤260 m³</td>
<td>FM 5560:2012, Appendix D</td>
</tr>
<tr>
<td>Combustion turbines >260 m³</td>
<td>FM 5560:2012, Appendix F</td>
</tr>
<tr>
<td>Industrial oil cookers</td>
<td>BS 8489-6 or FM 5560:2012, Appendix J</td>
</tr>
<tr>
<td>Pool and spray fires – local application</td>
<td>BS 8489-4 or FM 5560:2012, Appendix I</td>
</tr>
</tbody>
</table>
FM 5560 Fire Test Protocol

AquaMist
FM 5560 – Fire Test Protocol

- Restricted approval – 260m³ : 7.3m x 7.3m x 4.9m
- 5m ceiling height
- Personnel access door, without locking mechanism
- Twelve test configurations
- Approval criteria
 - Extinguishment

![Diagram of fire test protocol](image)
FM 5560 – Fire Test Protocol

• Test 1 : Unshielded 1MW Heptane Spray Fire
• Test 2 : Shielded 1MW Heptane Spray Fire
• Test 3 : Shielded Heptane Pool Fire
• Test 4 : Shielded 2MW Heptane Spray Fire - Ventilated
• Test 5 : Shielded 2MW Heptane Spray Fire – Small Enclosure
• Test 6 : Unshielded 1MW Diesel Spray Fire
• Test 7 : Shielded 1MW Diesel Spray Fire
• Test 8 : Shielded Diesel Pool Fire
• Test 9 Shielded 2MW Diesel Spray Fire – Ventilated
• Test 10 : Shielded 2MW Diesel Spray Fire – Small Enclosure
• Test 11 : Saturated Mat and Spray Fire
• Test 12 : Large Mat Pool Fire
FM 5560 – Fire Test Protocol

Approval Criteria

• Extinguish all fire tests with no manual intervention
• Quickest 1.06
• Slowest 4.49

System supply shall be twice the worst case fire test result or 10 minutes, whichever is the largest

• Machinery rundown time must be considered

Pass
FM 5560 – Fire Test Protocol

• **Mandatory Interlocks**
 • Automatic Door Closures
 • Electrical Shutdown
 • Fuel Shutdown
 • Lubrication shutdown
 • Ventilation shutdown
 • Containment of flammable liquid releases

• **Mandatory Monitoring**
 • Nitrogen / Air pressure to a manned location

• **Mandatory Temperature**
 • +4°C
 • +54.4°C
FM 5560 – Fire Test Protocol
FM 5560 – Fire Test Protocol
BS 8489-1 - Detection, Actuation and Control

Detection

- BS5839-1
- Match characteristics of risk

Actuation & Control

- Indicate operation of system (BS5839-1)
- Indicate failure of supervised device
- Electrical actuation
 - BS7273-3 (Pre-action)
 - BS7273-5 (Except pre-action)
- Non-Electrical actuation
 - protection
BS 8489-1 System Design
BS 8489-1 - System Design

Manufacturers Design and Installation Manual

- Fire test protocol
- Minimum and maximum heights
- Minimum and maximum distance between nozzles
- Minimum and maximum distance to walls
- Positioning relative to ceiling
- K factor
- Minimum and maximum pressure

Duration

- Deluge Systems
- Twice time to extinguish fire and prevent re-ignition as established in the test
- Minimum:

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Operating volume</th>
<th>Minimum discharge duration (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery spaces</td>
<td><80 m³</td>
<td>10</td>
</tr>
<tr>
<td>Machinery spaces</td>
<td><260 m³</td>
<td>10</td>
</tr>
<tr>
<td>Machinery spaces</td>
<td>>260 m³</td>
<td>60<sup>A)</sup></td>
</tr>
<tr>
<td>Combustion turbines</td>
<td><80 m³</td>
<td>10</td>
</tr>
<tr>
<td>Combustion turbines</td>
<td><260 m³</td>
<td>10</td>
</tr>
<tr>
<td>Combustion turbines</td>
<td>>260 m³</td>
<td>60<sup>A)</sup></td>
</tr>
<tr>
<td>Industrial oil cookers</td>
<td>As per test protocol</td>
<td>10</td>
</tr>
<tr>
<td>Pool and spray fires – local application</td>
<td>As per test protocol</td>
<td>10</td>
</tr>
</tbody>
</table>

^{A)} Unless verified as lower according to certification against fire protocol.
BS 8489-1 - System Design

Approval

- FM5560
- LPS 1283
- Alternative equivalent

Nozzles

- Corrosion resistant material
- Marked
 - Manufacturer
 - Model
 - Year of Manufacturer
 - K Factor

Pipe

- Approved to maximum design pressure
- Identified BS 1710
- Stainless Steel 316 (or equivalent)
- Copper BS EN 1057
- Galvanised Steel BS EN 10255
 - A strainer, and downstream test valve, should be fitted at the termination of the galvanized piping upstream of the piping feeding the nozzles.
- CPVC
BS 8489-1 - System Design

Pipe supports
- ISO 6182-11

Pipework
- Minimise exposure to damage
- Air vents
- System drains
- Suitably earthed

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Horizontal run m</th>
<th>Vertical run m</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>16</td>
<td>1.5</td>
<td>2.1</td>
</tr>
<tr>
<td>22</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>28</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>35</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>42</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>54</td>
<td>2.7</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Horizontal run m</th>
<th>Vertical run m</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>20</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>25</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>32</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>40</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>50</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>80</td>
<td>3.6</td>
<td>4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Horizontal run m</th>
<th>Vertical run m</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>15</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>22</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>28</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>32</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>40</td>
<td>1.05</td>
<td>2.1</td>
</tr>
<tr>
<td>50</td>
<td>1.2</td>
<td>2.4</td>
</tr>
<tr>
<td>65</td>
<td>1.35</td>
<td>2.7</td>
</tr>
<tr>
<td>80</td>
<td>1.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>
BS 8489-1 - System Design

Key
1 Propellant low pressure switch
2 Propellant regulator
3 System low pressure switch
4 System flow switch
5 Propellant vent valve
6 Propellant safety vent
7 System drain valve

Nozzle
Isolation valve
Stop valve
System drain valve
Pressure gauge
Water cylinder
Inert gas cylinder
Commissioning

AquaMist
BS 8489-1 - Commissioning

General

- Pipe is clean and free of debris
- End of line test valve discharge
- Checked against design documentation
- Visual inspection

Pipework

- 1.5 x maximum working pressure for 2 hours with no loss
- Dry pipe
 - 2.5 bar air test for 24 hours with no loss greater than 0.15 bar
 - 60 second water delivery

Detection and Actuation

- BS 8489-1
- BS 7273-3
- BS 7273-5
- Function check all valves

Documentation

- Completion certificate
- Pressure test certificate
- Conformation of pipe cleaning
- O&M
- As installed drawings
Thank You

AquaMist