

Towards performance-based dimensioning of water mist systems

by Dr. Maarit Tuomisaari Sr.Mgr / Research, Testing, Approvals

Marioff Corporation Oy

18th International Water Mist Conference, London, September 19-20th , 2018

- 1. Design and dimensioning methods (prescriptive or performance-based)
- 2. Physical justification behind system specific dimensioning
- 3. Conclusions and current stage

Example cases:

traditional sprinkler system ("trad") and high pressure water mist sprinkler system ("wm")

1. DESIGN AND DIMENSIONING METHODS (PRESCRIPTIVE OR PERFORMANCE-BASED)

Design and dimensioning methods (prescriptive or performance-based) and their combinations

- EN 12845 / CEA 4001 applies to all sprinkler systems
- Design and installation parameters are the same to all sprinkler systems

Design and dimensioning methods (prescriptive or performance-based) and their combinations

- EN 12845 / CEA 4001 applies to all sprinkler systems
- Design and installation parameters are the same to all sprinkler systems

Design and dimensioning methods (prescriptive or performance-based) and their combinations

- EN 12845 / CEA 4001 applies to all sprinkler systems
- Design and installation parameters are the same to all sprinkler systems

- Traditional sprinkler systems rely primarily on two-dimensional wetting.
- History has shown that with the same prescriptive design criteria the given prescriptive design area approach together with the fixed design flux density works sufficiently well to all sprinkler systems
- Water mist sprinkler systems rely on a combination of three-dimensional gas cooling, local inerting and blocking of radiant heat with the twodimensional wetting being only one of the many suppression mechanisms. The relative importance of the different mechanisms is system specific.
- It is not possible to give prescriptive design criteria with a single fixed design number (like flux density) to cover all the very different water mist systems and, hence, the design and installation parameters of water mist systems are defined on a performance basis.

PERFORMANCE-BASED DESIGN

 Design and installation parameters for water mist sprinkler systems are defined in full scale fire tests and they are entirely system specific

PERFORMANCE-BASED DESIGN PRESCRIPTIVE DIMENSIONING

 Water mist sprinkler system dimensioning is required to be based on the prescriptive design area requirements

Hazard class	RA	H.	OI	-12	O	-13
Design area (m ²)	7	2	14	14	2′	16
Sprinker system type	trad	wm	trad	wm	trad	wm
Sprinkler coverage area (m ²)	12	25	12	12	12	9
Nominal number of sprinklers	6	3	12	12	18	24
Max number of activations in tests		4				
Safety factor		< 1				

(* VdS approval tests for HI-FOG systems

PERFORMANCE-BASED DESIGN PRESCRIPTIVE DIMENSIONING

 Water mist sprinkler system dimensioning is required to be based on the prescriptive design area requirements

				MAX - N	Ť	
Hazard class	OI	H1	E		Oł	43
Design area (m ²)	72		144		216	
Sprinker system type	trad	wm	trad	wm	trad	wm
Sprinkler coverage area (m ²)	12	25	12	12	12	9
Nominal number of sprinklers	6	3	12	12	18	24
Max number of activations in tests		4		7		
Safety factor		< 1		1.7		

(* VdS approval tests for HI-FOG systems

Water mist sprinkler system dimensioning is rea

PERFORMANCE-BASED DESIGN

PRESCRIPTIVE DIMENSIONING

 Water mist sprinkler system dimensioning is required to be based on the prescriptive design area requirements

 $\ensuremath{^{\prime\ast}}$ VdS approval tests for HI-FOG systems

PERFORMANCE-BASED DESIGN PRESCRIPTIVE DIMENSIONING

 Water mist sprinkler system dimensioning is required to be based on the prescriptive design area requirements

			-				
Hazard class	R		O	OH2		13	
Design area (m ²)	7	2	14	14	21	6	
Sprinker system type	trad	wm	trad	wm	trad	wm	
Sprinkler coverage area (m ²)	12	25	12	12	12	9	
Nominal number of sprinklers	6	3	12	12	18	24	
Max number of activations in tests		4		7		10	
Safety factor		< 1		1.7		2.4	
^{(°} VdS approval tests for HI-FOG systems CEN/TS 14972: At least 4 prEN 14972: At least 6							

PERFORMANCE-BASED DESIGN PRESCRIPTIVE DIMENSIONING

 Water mist sprinkler system dimensioning is required to be based on the prescriptive design area requirements

Hazard class	R	TI	OI	-12	O	H3
Design area (m ²)	-	72	14	14	2 [,]	16
Sprinker system type	trad	wm	trad	wm	trad	wm
Sprinkler coverage area (m ²)	12	25	12	12	12	9
Nominal number of sprinklers	6	$3 \rightarrow 6$	12	12	18	24
Max number of activations in tests		4		7		10
Safety factor		< 1		1.7		2.4
(* VdS approval tests for HI-FOG systems	Mixing	norfomon		l dooign d	and proce	rintivo

Mixing perfomance-based design and prescriptive dimensioning requires artifical "fixing".

PERFORMANCE-BASED DESIGN AND DIMENSIONING

• What if also the dimensioning was based on full scale fire tests?

Hazard class	OH1		OH2		OH3	
Design area (m²)	72		144		216	
Sprinker system type	trad	wm	trad	wm	trad	wm
Sprinkler coverage area (m ²)	12	25	12	12	12	9
Nominal number of sprinklers	6	3	12	12	18	24
Max number of activations in tests (*	4	4	9	7	≥ 18	10
Measured safety factor	1.5	< 1	1.3	1.7	≤1	2.4
Design safety factor						

(* VdS approval tests for HI-FOG systems

PERFORMANCE-BASED DESIGN AND DIMENSIONING

- What if also the dimensioning was based on full scale fire tests?
- The only prescriptive number would be the Safety factor of 1.5

Hazard class	OH1		OH2		OH3	
Design area (m²)	7	2	144		216	
Sprinker system type	trad	wm	trad	wm	trad	wm
Sprinkler coverage area (m ²)	12	25	12	12	12	9
Nominal number of sprinklers	6	3	12	12	18	24
Max number of activations in tests (*	4	4	9	7	≥ 18	10
Measured safety factor	1.5	<1	1.3	1.7	≤1	2.4
Design safety factor			1.	.5		

(* VdS approval tests for HI-FOG systems

PERFORMANCE-BASED DESIGN AND DIMENSIONING

- What if also the dimensioning was based on full scale fire tests?
- The only prescriptive number would be the Safety factor of 1.5

Hazard class	OH1		OH2		OH3		
Design area (m²)	72		144		216		
Sprinker system type	trad	wm	trad	wm	trad	wm	
Sprinkler coverage area (m ²)	12	25	12	12	12	9	
Design number of sprinklers	6 → 6	3 → 6	42 → 14	42 → 11	(18 → 27)	24 → 15	
Max number of activations in tests (*	4	4	9	7	≥ 18	10	
Measured safety factor	1.5	<1	1.3	1.7	≤-1	2.4	
Design safety factor	1.5						
(* VdS approval tests for HI-FOG systems Mixing prescriptive design and performance-based dimensioning							

Mixing prescriptive design and performance-based dimensioning contradicts the current experience.

CONSISTENT DESIGN AND DIMENSIONING

- Prescriptive design / Prescriptive dimensioning
- Prescriptive design / Performance-based dimensioning
- Performance-based design / Prescriptive dimensioning
- Performance-based design / Performance-based dimensioning

Hazard class	OH1		OH2		OH3	
Design area (m²)	72		144		216	
Sprinker system type	trad	wm	trad	wm	trad	wm
Sprinkler coverage area (m ²)	12	25	12	12	12	9
Nominal / Design number of sprinklers	6	6	12	11	18	15
Max number of activations in tests (*		3		7		10
Safety factor		1.5		1.5		1.5

2. PHYSICAL JUSTIFICATION BEHIND SYSTEM SPECIFIC DIMENSIONING

Towards performance-based dimensioning of water mist systems

WHAT AFFECTS THE NUMBER OF ACTIVATIONS?

- There are several different issues that affect the number of activations:
 - Spray characteristics
 - Bulb characteristics (T rating, RTI)
 - Spacing between sprinklers
 - Water flow rate...
- Spray characteristics play THE major role
- All downward water sprays entrain parts of the ceiling jet into the sprays and divert that heat down, but a high pressure water mist spray and/or a narrower spray does it more effectively than a traditional sprinkler spray:

the hot smoke spread is restricted preventing activations further away from the fire.

NUMBER OF ACTIVATIONS : EXPERIMENTAL 1

16

14

 The trend was verified in a systematic experimental study together with Dr. Jukka Vaari / VTT and published in VTT Technology Report 54, 2012

Air entrainment rate by different sprays

Physical justification behind system specific, performance-based dimensioning

120

NUMBER OF ACTIVATIONS : EXPERIMENTAL 2

- Generic full scale tests in a large test hall with a 200 m² ceiling
- The tests were supplemented by validated FDS simulations run at the time of the testing and again just recently

NUMBER OF ACTIVATIONS : EXPERIMENTAL 2

The VTT test hall with a 200 m² movable ceiling allowing free spread of smoke past the ceiling edges into the volume above the ceiling

Desirevery 11.2 - Mar 20 (80)

FREE BURN Hot smoke spreads freely towards and past the edges of the ceiling into the volume above it.

TRADITIONAL SPRINKLERS The spread of hot smoke is somewhat limited but large amounts pass the sprinklers along the ceiling and into the volume above it.

HI-FOG SPRINKLERS (high pressure water mist) Most of the hot smoke gets entrained into the high momentum water mist sprays and gets cooled and pushed down. The spread of hot smoke is essentially stopped.

FDS simulations on the number of activations by Dr. Kati Laakkonen / Marioff

- 2.5 m ceiling height
- constant HRR
- Two scenarios:
 (i) fire under one sprinkler
 (ii) fire between four sprinklers

Ceiling heig	ght 2.5 m	Scenario : fire under 1 sprinkler					
	10 s	60 s	120 s	420 s	Number of activations		
trad		N N	M2 M2 M2 M2 M2 M2 M2 M2 M3 M4 M2 M2 M2 M2 M2 M2 M3 M4 M2 M2 M2 M2 M2 M3 M4 M4 M2 M2 M2 M2 M2 M3 M4 M4 M2 M2 M2 M2 M2 M4 M4 M4 M3 M2 M3 M2 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	No Ma Ma<	10 s : 1 60 s : 4 120 s : 9 420 s : 13		
wm 30 bar				40 10 10 10 10 10 10 10 10 10 1	10 s : 1 60 s : 3 120 s : 6 420 s : 7		
wm 50 bar					10 s : 1 60 s : 1 120 s : 3 420 s : 3		
wm 80 bar			H1 H2 H3 H3 H3 H3 11 14 14 4 14 14 12 14 14 4 14 14 12 14 14 4 14 14 14 14 14 64 27 141 14 14 04 24	Mathematical Mathematical<	10 s : 1 60 s : 1 120 s : 1 420 s : 3		

Physical justification behind system specific, performance-based dimensioning

The LT f

Bee 214

Ceiling heig					
	30 s	120 s	240 s	600 s	Number of activations
trad	Bit 1/2 20 p <td>Matrix Diff <thdiff< th=""> Diff Diff <t< td=""><td>17 11 11 10 10 10 10 11 11 11 11 12 13 14 14 14 14 14 14 14 12 14 14 14 14 14 14 14 14 13 14<td>31 41 91 44 91 84 91 84 91<</td><td>30 s : 4 120 s : 4 240 s : 4 600 s : 14</td></td></t<></thdiff<></td>	Matrix Diff Diff <thdiff< th=""> Diff Diff <t< td=""><td>17 11 11 10 10 10 10 11 11 11 11 12 13 14 14 14 14 14 14 14 12 14 14 14 14 14 14 14 14 13 14<td>31 41 91 44 91 84 91 84 91<</td><td>30 s : 4 120 s : 4 240 s : 4 600 s : 14</td></td></t<></thdiff<>	17 11 11 10 10 10 10 11 11 11 11 12 13 14 14 14 14 14 14 14 12 14 14 14 14 14 14 14 14 13 14 <td>31 41 91 44 91 84 91 84 91<</td> <td>30 s : 4 120 s : 4 240 s : 4 600 s : 14</td>	31 41 91 44 91 84 91 84 91<	30 s : 4 120 s : 4 240 s : 4 600 s : 14
wm 30 bar		reference de la construcción de			30 s : 4 120 s : 4 240 s : 5 600 s : 5
wm 50 bar		Matrix Description Description <thdescriparty< th=""> <thdescription< th=""> <thd< td=""><td>temperatures</td><td>s stable after 60 s</td><td>30 s : 4 120 s : 4</td></thd<></thdescription<></thdescriparty<>	temperatures	s stable after 60 s	30 s : 4 120 s : 4
wm 80 bar		No I	temperatures	s stable after 60 s	30 s : 4 120 s : 4

3. CONCLUSIONS AND CURRENT STAGE

Towards performance-based dimensioning of water mist systems

- Spray characteristics have a major effect on
 - i. the water mist sprinkler system performance
 - \rightarrow performance-based, system specific design and installation criteria
 - ii. the number of water mist sprinkler activations
 - \rightarrow performance-based, system specific dimensioning criteria

• Dimensioning should be based on the maximum number of sprinklers activating in the fire tests with a fixed safety factor of 1.5

CURRENT STAGE

 FM Approvals is the first authority applying performance-based approach for both the design and dimensioning

Fire Tests for Water Mist Systems for the Protection of Data Processing Equipment Rooms/Halls Appendix M ...above Raised Floor Appendix N ...below Raised Floor

"The design area of the water mist system shall be 6 nozzles or 1.5 times the number of operated nozzles during fire performance testing, whichever is greater."

 Currently (August 2018) there are three different FM Approved systems for above raised floor with dimensioning for 18 nozzles and for 6 nozzles.

Approval Standard for Water Mist Systems

Class Number 5560

Thank You For Your Attention

Email: <u>maarit.tuomisaari@marioff.fi</u> Web: <u>www.marioff.com</u> Youtube: <u>https://www.youtube.com/user/MarioffHIFOG/</u>