Water Mist Extinguishment of Exhaust Duct Fires

Hong-Zeng (Bert) Yu

2021 International Water Mist Conference
October 27 - 28, 2021
Warsaw, Poland
Exhaust ducts in industrial occupancies

- Food processing
- Semiconductor fabrication
- Pharmaceutical production
- Metal processing
- Power generation
- Paper and pulp production
- Textile
- Chemical processing
- Spray painting
-
Advantages of Water Mist Protection

- Better spray dispersion in ventilated tight space
- Less water runoff
- Effective for flame extinction to extinguish fire quickly in ventilated ducts
- Easier nozzle installation in ducts
Outline

• Test fires
• Evaluation of fire extinguishment in 0.3-m duct
 – Test facility
 – Water mist protection
 – Fire test results
• Evaluation of fire extinguishment in 0.61-m duct
 – Test facility
 – Water mist protection
 – Fire test results
• Conclusions
Test Fires

- Simulate fires fueled by combustible deposits on duct’s inside surface
- Use propane as the surrogate fuel

<table>
<thead>
<tr>
<th>Duct Diameter (m)</th>
<th>Freeburn Fire Heat Release Rate (kW)</th>
<th>Propane Release Rate (liter/min)</th>
<th>Duct Length for Propane Release (mm)</th>
<th>Exhaust Air Velocity (m/s)</th>
<th>Volumetric Air Flow Rate at Duct Entrance (m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>105</td>
<td>74</td>
<td>57</td>
<td>0.84</td>
<td>3.7</td>
</tr>
<tr>
<td>0.30</td>
<td>205</td>
<td>144</td>
<td>57</td>
<td>1.68</td>
<td>7.4</td>
</tr>
<tr>
<td>0.30</td>
<td>310</td>
<td>218</td>
<td>57</td>
<td>2.52</td>
<td>11.0</td>
</tr>
<tr>
<td>0.30</td>
<td>475</td>
<td>331</td>
<td>57</td>
<td>3.89</td>
<td>17.0</td>
</tr>
<tr>
<td>0.61</td>
<td>410</td>
<td>295</td>
<td>114</td>
<td>0.84</td>
<td>14.7</td>
</tr>
<tr>
<td>0.61</td>
<td>820</td>
<td>590</td>
<td>114</td>
<td>1.68</td>
<td>29.4</td>
</tr>
</tbody>
</table>
0.3-m Duct Test Facility – Horizontal Orientation

- Stainless steel ductwork
- Blower
- Bypass
- Flow conditioning screen

- Two water mist application locations at 3 m apart
- Propane-release plenum
- Viewport
- Drain
0.3-m Duct Test Facility – Vertical Orientation
0.3-m Duct Test Facility - Instrumentation

- Duct wall temperature
- Gas temperature
- Gas velocity at duct opening
- Propane release rate
- Nozzle operating pressure
- Total water mist discharge rate
0.3-m Duct Test Facility – Horizontal Orientation

Duct insulated to simulate the thermal response of 0.3-m diameter combustible ducts made of:

- Fiber Reinforced Plastic (FRP)
- Polypropylene (PP)
- Fiberglass
- PVC
0.3-m Duct Test Facility – Vertical Orientation
Water Mist Protection for 0.3-m Duct Tests

• Targeted water mist concentration: 300 cc/m³ or higher

• Water mist application
 – Spacing for the water mist application: 3 m
 – Water mist concentration provided from the upstream application
 √ 471 cc/m³ at midpoint between the two application locations
 √ 303 cc/m³ right before the downstream application location

• Volume-median droplet size: 77 µm
Horizontal 0.3-m Duct Test Results

<table>
<thead>
<tr>
<th>Freeburn Fire Heat Release Rate (kW)</th>
<th>Air Ventilation Rate (m³/min)</th>
<th>Propane Release Location</th>
<th>Preburn Time (s)</th>
<th>Number of Tests</th>
<th>Fire Extinguished ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>3.7</td>
<td>upstream</td>
<td>30</td>
<td>4</td>
<td>4 of 4</td>
</tr>
<tr>
<td>205</td>
<td>7.4</td>
<td>upstream</td>
<td>30</td>
<td>4</td>
<td>4 of 4</td>
</tr>
<tr>
<td>310</td>
<td>11.0</td>
<td>upstream</td>
<td>30</td>
<td>3</td>
<td>3 of 3</td>
</tr>
<tr>
<td>475</td>
<td>17.0</td>
<td>upstream</td>
<td>30</td>
<td>3</td>
<td>3 of 3</td>
</tr>
<tr>
<td>105</td>
<td>3.7</td>
<td>midpoint</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>205</td>
<td>7.4</td>
<td>midpoint</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>310</td>
<td>11.0</td>
<td>midpoint</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>475</td>
<td>17.0</td>
<td>midpoint</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>105</td>
<td>3.7</td>
<td>downstream</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>205</td>
<td>7.4</td>
<td>downstream</td>
<td>15</td>
<td>4</td>
<td>2 of 4</td>
</tr>
<tr>
<td>310</td>
<td>11.0</td>
<td>downstream</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>475</td>
<td>17.0</td>
<td>downstream</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
A Horizontal 0.3-m Duct Test Video

- Fire size: 475 kW
- Fire origin: Midpoint between upstream and downstream water mist applications
Horizontal 0.3-m Duct Tests with an Increased Water Mist Concentration

- Water mist concentration at the downstream fire location: 395 cc/m³
- Volume-median droplet diameter: 88 µm

<table>
<thead>
<tr>
<th>Freeburn Fire Heat Release Rate (kW)</th>
<th>Air Ventilation Rate (m³/min)</th>
<th>Propane Release Location</th>
<th>Preburn Time (s)</th>
<th>Number of Tests</th>
<th>Fire Extinguished ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>7.4</td>
<td>Downstream</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>310</td>
<td>11.0</td>
<td>Downstream</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>475</td>
<td>17.0</td>
<td>Downstream</td>
<td>15</td>
<td>2</td>
<td>2 of 2</td>
</tr>
</tbody>
</table>

- Tests also showed that, with same protection, fire in the vertical duct could be extinguished similarly as in the horizontal duct.
Duct Wall Temperature – 0.3-m Duct Tests

• Measurement: Not higher than 200°C.

• Protection applicable to ducts made of steel, fiber-reinforced plastic and fiberglass, but not for polypropylene and PVC due to the lower softening temperature.
0.61-m Duct Test Facility – Horizontal Orientation

- Stainless steel ductwork
- Blower
- Bypass
- Flow conditioning screen

- Two nozzle locations 3.3 m apart
- Three propane-release plenums
- Viewport
- Drain
0.61-m Duct Test Facility – Vertical Orientation
0.61-m Duct Test Facility - Instrumentation

- Duct wall temperature
- Gas temperature
- Gas velocities before test section and at duct opening
- Propane release rate
- Nozzle operating pressure
- Total water mist discharge rate
Test Conditions and Results – Horizontal 0.61-m Duct

- Water mist concentration at midpoint between the upstream and downstream application locations: 422 cc/m³
- Volume-median droplet diameter: 115 µm

<table>
<thead>
<tr>
<th>Free-Burn Fire Heat Release Rate (kW)</th>
<th>Air Ventilation Rate (m³/min)</th>
<th>Propane Release Location</th>
<th>Preburn Time (s)</th>
<th>Number of Tests</th>
<th>Fire Extinguished?</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>14.7</td>
<td>upstream</td>
<td>15, 30</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>820</td>
<td>29.4</td>
<td>upstream</td>
<td>15, 30</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>410</td>
<td>14.7</td>
<td>midpoint</td>
<td>15, 30</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>820</td>
<td>29.4</td>
<td>midpoint</td>
<td>15, 30</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>410</td>
<td>14.7</td>
<td>downstream</td>
<td>15, 30</td>
<td>2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>820</td>
<td>29.4</td>
<td>downstream</td>
<td>15, 30</td>
<td>2</td>
<td>2 of 2</td>
</tr>
</tbody>
</table>

- Similar test results were obtained for fire situated in the vertical duct.
Duct Wall Temperature – 0.61-m duct Tests

- 15-s preburn: Peak temperature not higher than 195°C
- 30-s preburn: Peak temperature up to 320°C

To protect FRP and fiberglass ducts, a preburn time not longer than 15 s is recommended.
Conclusions

• Water mist is capable of extinguishing exhaust duct fires with a water mist concentration of 300 cc/m³ or higher.

• Besides steel ducts, water mist protection is applicable to combustible ducts made of FRP and fiberglass.

• A preburn time not longer than 15 s is recommended for the protection of FRP and fiberglass ducts.
Thank you!

Disclaimer: The opinions, views and/or results expressed in this presentation are solely those of the presenter and, unless expressly stated to the contrary, do not necessarily represent the opinion or position of IWMA. IWMA does not guarantee the accuracy or reliability of the information provided herein.