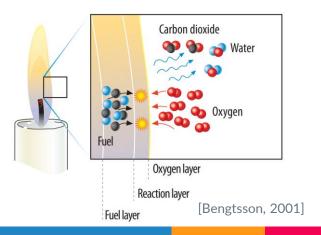
Generation of carbon monoxide in fires partially suppressed through water mist application

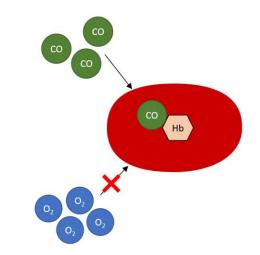
Haydn Lewis Fire Engineering Manager Jensen Hughes

Dr Nils Johansson Senior Lecturer Lund University



Project background

Diffusion flames


- ▷ Most prevalent for built environment fires
- Molecular diffusion of fuel and oxygen
- Inefficient mixing leads to generation of by-products, including CO

Carbon monoxide

- Asphyxiant Anaemic hypoxia
- Lowers oxygen delivery capacity of blood
- ▷ Accounts for 2/3 of fire deaths within enclosures
- Particularly important for scenarios with extended egress conditions

Fire suppression by water

- Increased prevalence of fire suppression systems due to progression to bigger/more complex buildings
- Research focused on factors behind suppression through water on extinction/suppression
 - Limited consideration of factors involved
- Complex physio-chemical process with many mechanisms

Aim

- To contribute knowledge of fires subject to suppression by water droplets;
 - specifically, the interaction of fine water droplets on the gas phase chemistry of fire, the interruption of the combustion chemical process and resulting generation of carbon monoxide

Objective

- To experimentally assess the factors which influence the rate, and significance, of carbon monoxide generation within partially suppressed fires
- ▷ Factors considered:
 - Water droplet size
 - Rate of water
 - \circ Fuel type
 - o HRR

Methodology

▷ Literature review

- Existing analogous experimental studies
- Suppression/species production mechanisms
- Design experimental set-up
- ▷ Perform experiments
 - Analyse consistency and trends of results
- Compare trends in data with theory to determine key influencing factors

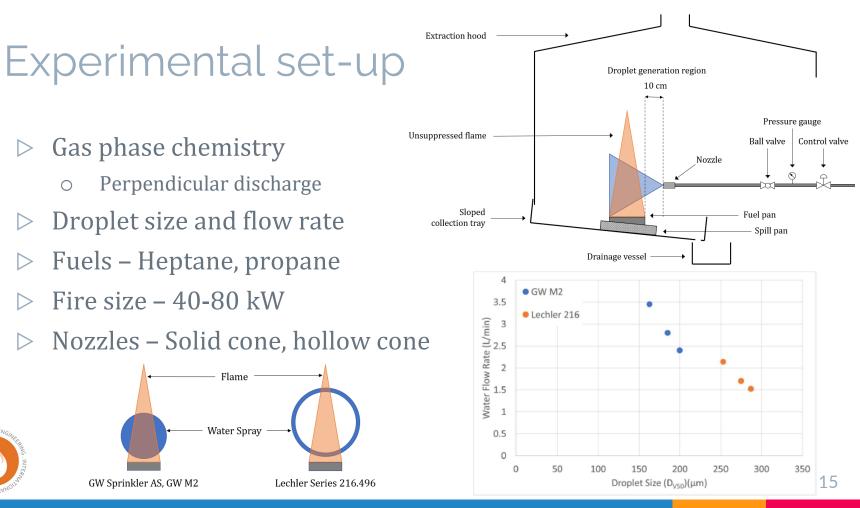
Physical and Chemical Mechanisms

- ▷ Droplets interact with combustion through:
 - \circ Cooling
 - Inerting
 - Thermal radiation attenuation
 - Inhibiting
 - Blanketing
 - Flame blow-off
- > Droplet size/speed determines applicability of each mechanism

Combustion processes consist of many thousands of elementary reactions

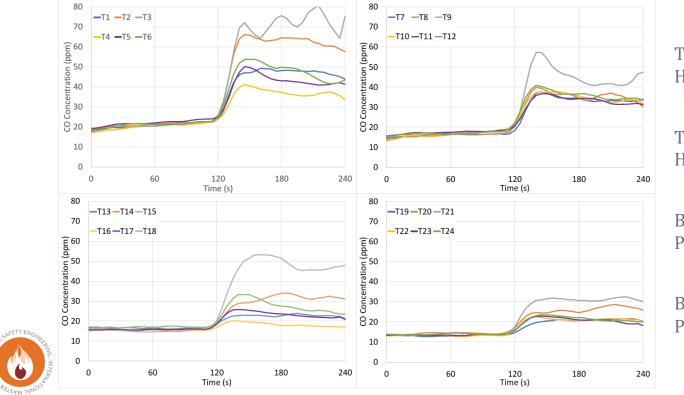
Existing analogous experimental studies

▷ 20 studies of droplet interaction with fire


- Focused on HRR and temperatures
- Diverse range of fuels, scales, ventilation conditions and droplet sizes
- ▷ Majority of studies show:
 - Significant short duration peak in CO concentrations detected
 - Typically water sprays reduce heat release rate, quantity of combustion, and therefore possible reactions to generate products of combustion

Smaller characteristic diameter sprays have larger increases in CO concentrations

5. Experimental set-up



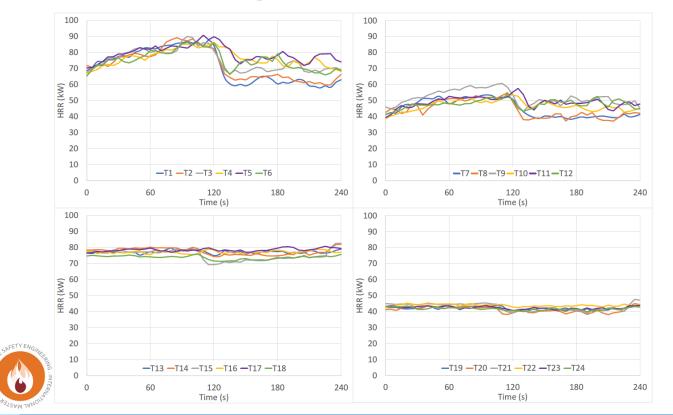
Liquid and gaseous fuels – CO Conc

AFETYE

Lund

UNIVERSITY

Top left: 80 kW Heptane;


Top right: 40 kW Heptane;

Bottom left: 80 kW Propane;

Bottom right: 40 kW Propane

17

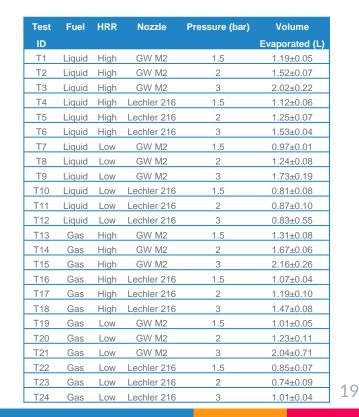
Liquid and gaseous fuels – HRR

Lund

UNIVERSITY

Top left: 80 kW Heptane;

Top right: 40 kW Heptane;


Bottom left: 80 kW Propane;

Bottom right: 40 kW Propane

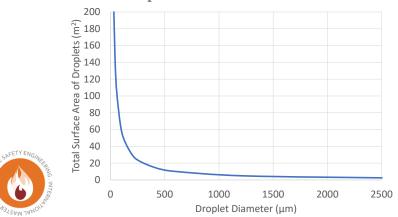
18

Water interacting with flame

- Water flux only relevant where it directly interacts with combustion
- Droplet-flame interaction volume proportional to volume evaporated

Variable analysis

▷ Visualisation of trends


Variable analysis

▷ Smaller droplets

LUND

UNIVERSITY

- Absorb more heat cooling the reaction
- Generate more inert H₂0 vapour

Variable analysis

▷ Higher water flux

 More droplets to absorb heat and evaporate

CO generation – Fuel chemistry

- Fuel pan and sandbox burner result in different flame shapes
- For a given HRR, similar amounts of water evaporated for both fuels.
 However, significantly higher levels of CO increase for heptane
- Fuels producing greater levels of CO under free burning conditions are more influenced by combustion
 interruption by water mist

Test ID	Volume Evaporated	Volume Evaporated	CO Conc. Increase (%)	CO Conc. Increase
	(L)	Difference	increase (70)	Difference
T1 - Heptane	(-) 1.19±0.05	10%	135±17	Difference
T13 - Propane	1.31±0.08		38±3	+255%
T2 - Heptane	1.52±0.07	10%	200±20	+90%
T14 - Propane	1.67±0.06		105±9	
T3 - Heptane	2.02±0.22	7%	264±28	+17%
T15 - Propane	2.16±0.26		226±10	
T4 - Heptane	1.12±0.06	4%	86±23	+514%
T16 - Propane	1.07±0.04		14±2	
T5 - Heptane	1.25±0.07	5%	101±16	+120%
T17 - Propane	1.19±0.10		46±2	
T6 - Heptane	1.53±0.04	4%	131±20	+122%
T18 - Propane	1.47±0.08		59±5	
T7 - Heptane	0.97±0.01	4%	112±12	+87%
T19 - Propane	1.01±0.05		60±6	
T8 - Heptane	1.24±0.08	1%	123±18	+45%
T20 - Propane	1.23±0.11		85±8	
T9 - Heptane	1.73±0.19	18%	164±17	+22%
T21 - Propane	2.04±0.71		134±4	
T10 - Heptane	0.81±0.08	5%	119±25	+98%
T22 - Propane	0.85±0.07		60±7	
T11 - Heptane	0.87±0.10	15%	95±12	+76%
T23 - Propane	0.74±0.09		54±4	
T12 - Heptane	0.83±0.55	22%	114±11	+111%
T24 - Propane	1.01±0.04		54±6	Ŧ111/0

Implications for fire engineering designs

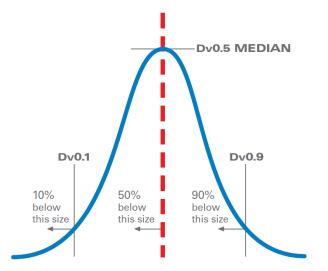
- FSE designs on the basis of predicted toxicity dose potentially underestimate levels of toxic exposure
- Where mist suppression is sufficient to significantly reduce HRR, the rate of CO generation is significantly reduced
- Applicable fire scenarios are those featuring extended egress conditions and suppression systems
- > Consideration of more conservative safety factor

Conclusions

- Water droplets interrupt the combustion process and pathway to oxidation through many different mechanisms
- Minor reductions to heat release rate, with increases in CO concentrations up to 250%
- ▷ Most significant factors:
 - Droplet flame interaction volume
 - Characteristic size of water droplets
 - Water flux applied
- Suggestion of more conservative species yields in certain fire scenarios

Proof of concept to a largely under explored phenomenon

Haydn.Lewis@jensenhughes.com



10. Additional figures

Droplet distribution

