

Carl Pettersson BSc Fire Safety Engineer MSc Risk Management

Fire Safety in Timber Buildings -A review of existing knowledge

- COST Action CA20139, Holistic design of taller timber buildings (HELEN)
- Network Fire brigades

Carl Pettersson

Brandforsk

Gävle, Sweden, City Fire 10 July 1869 13 000 people lost their homes

Fire resistance – temperature curve

Fire resistance – temperature curve

Exposed timber

Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 3 -Cross Laminated Timber Compartment Fire Tests Fire Protection Research Foundation, the National Research Council Canada and the National Institute of Standards and Technology

Time (min)

- Geometry and ventilation
- Exposed surfaces
- Type of glue and thickness of lamellas
- Duration of fire exposure

Figure 2.Debonding – the difference between char fall-off and delamination, and failure description at the bond line

<u>Čolić</u> A. (2021) International Master of Science in Fire Safety Engineering Thesis: **Study of the char fall-off phenomenon in cross-laminated timber under fire conditions**. DOI:<u>10.13140/RG.2.2.10704.84480</u>

Fire spread

Fire spread - facade

Fire spread - External

Exposure from mass timber compartment fires to facades Johan Sjöström, Daniel Brandon, Alastair Temple, Emil Hallberg, and Fredrik Kahl RISE Report 2021:39

Durability of Reaction to Fire Performance

EN 16755:2017 – DRF EXT?

Fire spread - External

Fire spread - External

Exposed timber internally

- Fire compartments
 - Penetrations
 - Openings (doors, windows, shafts)
 - Joints
- Loadbearing capacity
 - Length of fire exposure

Fire spread – cavities

-

Fire spread – cavities

Fire spread – joints

- Movement over time.
- Document the protection during built.
- Inspect and maintain protection.

Burnout?

Structural capacity in fire of laminated timber elements in compartments with exposed timber surfaces (2019) Felix Wiesner, Luke A. Bisby, Alastair I. Bartlett, Juan P. Hidalgo, Simón Santamaria, Susan Deeny,

- Tested 90 min in according to fire curve
- Measured temperature during 330 min

"

For some (predominantly combustible) construction methods, compliance with building regulations alone might have little relevance to a building's insurability

RISCAuthority UK *Insurance challenges of massive timber construction and a possible way forward,* Revision 1.0 January 2022

Insurance recommendations Sweden

≥ 4 storeys	
OFFICE	RESIDENTIAL
EN 12845 Automatic sprinkler system	EN 16925 Residential sprinkler system

8 storeys	
OFFICE	RESIDENTIAL
EN 12845 Automatic sprinkler system	EN 16925 Residential sprinkler system
	EN 12845

Automatic sprinkler system

+ 16 storeys	
OFFICE	RESIDENTIAL
EN 12845	EN 12845
Automatic sprinkler system	Automatic sprinkler system

The need for fire brigade intervention may lead to extensive water damage

Figure 1: Allowable wood use in different applications for residential buildings in Europe.

To conclude

- Due to the potential of high consequences, it is important to reduce the possibility of both:
 - Small fires (fire spread in cavities)
 - Large fires (extended fire duration and fire spread)
- The fire behaviour is influenced by many factors.
- Reducing the fire growth and the potential involvement of timber structures in a fully developed fire is the most effective fire safety measure.

Carl Pettersson

+46 703 103 332 carl.pettersson@redfireengineers.se

