

Feasibility Analysis and FDS Modelling of Water Mist Fire Suppression Systems for the Protection of Aircraft Hangars

KARLI STERANKA | OCTOBER 2023

Copyright © 2022 Jensen Hughes. All rights reserved.

jensenhughes.com

Presentation Overview

Outline

- + Motivation / Project Background
- + COTS Water Mist Literature Review Results
- + FDS Models
 - Engineering Configuration
 - FDS Inputs
 - Validation Studies
 - Results

2 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

U.S. Air Force & UMD Research Project

Research Motivation

- + Risks associated with per-and polyfluoroalkyl substances (PFAS) containing aqueous film forming foams (AFFF) [NFPA 72]
 - Toxicity
 - Biodegradability
 - Persistence
 - Persistence in wastewater treatment plants
 - Nutrient loading

"On average there are 11.8x the number of accidental foam discharges vs those responding to fires" –Dr. Milke, 2020 [UMD]

3 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

COTS Literature Review Summary / Results

Identify all COTS Water Mist System

Literature Review Criteria

- + 15 COTS water mist manufacturers identified for evaluation
 - Low pressure (P ≤ 12 bar)
 - Intermediate pressure
 (12 bar <P ≤ 34 bar)
 - High pressure (P > 34 bar)
 - Hybrid systems (inert gas + water mist)

- + Marketed applications
- + Industry installations
- + Test results for class B fires
- + Relevant approvals (FM &IMO)
- + Public literature water mist characteristics

- + 8 manufacturers initially dismissed
- + 7 manufacturers identified as potentially successful
- + 2 manufacturers (3 nozzles) identified for Phase II
 - Nozzle A: Low pressure ceiling nozzle
 - Nozzle B: Low pressure floor nozzle
 - Nozzle C: High pressure ceiling nozzle

FDS Background / Model Overview

FDS Overview

- + Computational Fluid Dynamic (CFD) model of fire-driven fluid flow
 - Solves modified Navier Stokes equations
 - Low mach number approximation
 - Large eddy simulation (LES)

Engineering Configuration

- + Mock F-35 aircraft hangar
 - Overall dimensions: 26 m x 26 m x
 12 m
 - Hangar door: 24 m x 7 m
 - Aircraft: 11m (wingspan), 16 m (length), 2 m (fuselage height), 4 m (tail height)
- + JP-8 unconfined fuel spill
 - 12 m x 24 m (assumed trench system)
- + Electrical boxes and structural steel members
- + Water mist nozzle spacing based on manufacturer recommendations

5 | Copyright © 2023 Jensen Hughes. All rights reserved.

Fuel Model : JP-8 Jet Fuel unconfined spill

FDS Sub Models

- + Pyrolysis Model: Liquid pyrolysis
- + Combustion Model: Infinitely fast, mixing controlled combustion
- + Radiation Model: Optically thin, specified radiative fraction

FDS Inputs

Property	FDS Input Value
$C_{p}, \left[\frac{kJ}{kg * K}\right]$	RAMP T = 20, F = 2 T = 17-, F = 2.65
P, $\left[\frac{kg}{m^3}\right]$	780
k, $\left[\frac{W}{m * K}\right]$	RAMP T= 20, F= 0.115 T=170, F = 0.085
$h_{v}, \left[\frac{kJ}{kg}\right]$	350
χr	0.05
Τ _b , [° <i>C</i>]	190
Absorption Coefficient	301
Soot Yield	0.03

jensenhughes.com

Lagrangian Particle Model: Nozzles

Required Inputs

- + K-factor
- + Operating Pressure
- + Offset Distance
- + Particles Per Second
- + Initial Velocity
- + Spra

+ Drop

$$\begin{array}{l} \text{ay Angle} \\ \text{plet Size Distribution} \quad F_{v}(D) = \begin{cases} \frac{1}{\sqrt{2\pi}} \int_{0}^{D} \frac{1}{\sigma D'} exp(-\frac{\left[ln\left(\frac{D'}{D_{v,0.5}}\right)\right]^{2}}{2\sigma^{2}}) dD' & (D \leq D_{v,0.5}) \\ 1 - exp(-0.693 * \left(\frac{D}{D_{v,0.5}}\right)^{\gamma}) & (D > D_{v,0.5}) \end{cases} \end{array}$$

8 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Nozzle Characteristic Validation Simulations

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

9 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Nozzle A, B, & C Characteristics

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

	Parameter	Nozzle A	Noz	zle B	Nozz	zle C
			Center Nozzle	Perimeter Nozzle	Center Nozzle	Perimeter Nozzle
	K-factor $\left[\frac{L}{min*bar^{1/2}}\right]$	5.6	10	10	0.433	0.433
	P [bar]	16	8	8	70	70
	V ₀ [m/s]		35	20	118	118
	ϕ [degrees]	80	60	60	24	24
	Nozzle Orientation [degrees]		-	45	-	30
	D _{ν50} [μm]	User specified	200	200	79	79
	γ	(prev slide)	2	2	2.26	2.26
)	σ		0.58	0.58	0.5	0.5
	<i>r</i> ₀ [m]	0.3	0.1	0.1	0.1	0.1

Droplet Size Distribution

10 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Grid Analysis & Selection

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

	Center Ignition Source		
Activation Time	Activation Time 30 ¹ sec 50 ² sec		30 ¹ sec 50 ² sec
Nozzle A	A.1	A.2	
Nozzle B	B.1 & B.3 ³		B.2.a B.2.b
Nozzle C	C.1	C.2	
¹ based on hand calculation e ² based on DoD required activ ³ Nozzle A and Nozzle B in ha	stimates for flame detec /ation time Ingar	tion	Max. 8,00 meter between nozzles Max. 8,00 meter between nozzles

15 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Results Guide

Performance Criteria

- + Structural Steel members < 450 °C Critical Heat Flux for Delamination
 - 15 kW/m² \rightarrow 129 seconds
 - 25 kW/m² \rightarrow 74 seconds
 - 35 kW/m² \rightarrow 51 seconds
- + Control of Fire

16 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Simulation Results A.1

Performance Criteria

- + HRR is not controlled or suppressed
- + Max instantaneous structural steel temp: > 450 °C
- + Max incident heat flux to plane: > 35 kW/m²

17 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Simulation Results B.2 (Nozzle B)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

Performance Criteria

- + Peak HRR: 25 MW + (w/o suppression 100 MW at 60 seconds)
- Max instantaneous structural steel temp: < 400 °C
- + Max incident heat flux to plane: < 20 kW/m²
 - Ignition source center of fuel spill

18 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Simulation Results B.2 (Nozzle B)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

19 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Simulation Results B.2 (Nozzle B)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

Simulation Results B.3 (Nozzle A&B)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

Performance Criteria

- + Peak HRR: < 3.2 MW (w/o suppression 100 MW at 60 seconds)
- + Max instantaneous structural steel temp: < 60 °C
- + Max incident heat flux to plane: < 85 kW/m²
 - Ignition source side of fuel spill (under plane)

21 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Simulation Results B.3 (Nozzle A&B)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

Temperature (left) and Y_{H_2O} (right) at 35 seconds

22 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Simulation Results C.1 (Nozzle C)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

Performance Criteria

- + Peak HRR: < 20 MW (w/out suppression 100 MW at 60 seconds)
- + Max instantaneous structural steel temp: < 300 °C</p>
- + Max incident heat flux to plane: < 5 kW/m²

jensenhughes.com

Simulation Results C.1 (Nozzle C)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

Video showing temperature, HRRPUV, and water particles

24 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Simulation Results C.1 (Nozzle C)

Nozzle A: Low pressure ceiling mounted Nozzle B: Low pressure, floor pop-up Nozzle C: High pressure, ceiling mounted

25 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Conclusions

- + Seven manufacturers (10 combined water mist systems) were identified as potential candidates to provide successful protection from pool fires in aircraft hangars
- + Water mist nozzles are highly grid dependent
- + High pressure water mist nozzles must use the parameter PARTICLE_CFL
 =.TRUE
- + Nozzle A alone is not able to suppress or extinguish a large JP-8 fuel spill
- + Nozzle B is able to prevent the fire from growing at the expected rate, but the floor nozzles alone are not able to extinguish the fire
- + Both Nozzle C and Nozzle A/B combined can extinguish this fire.
 - Simulation C.1 reaches a peak HRR of ~ 20 MW vs Simulation B.3 maintains a peak HRR less than 4 MW.
 - Floor nozzles generally cause the flame structure to deform more than the ceiling nozzles → higher heat fluxes to the aircraft

26 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com

Questions?

Contact Information Karli.Steranka@jensenhughes.com +1 (240) 563-4208