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INTRODUCTION
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➢ Long-term objective:

‘Improve the predictive capabilities of CFD modelling of water sprays interaction with fire-driven flows’

Evaluate existing models:

• Droplet heat-up 

• Drag reduction in dense sprays 

➢ More fundamental approach → stepwise approach

• Simple test cases prior to more complex test cases

• In-house code          prior to CFD

➔ ~ large droplets   ➔ Sprinklers

➔ ~ fine droplets ➔ Water mist



FIRE DYNAMICS SIMULATOR

➢ FDS

• Particularly appropriate for thermally-driven flows

• Simulation of water sprays : Eulerian-Lagrangian approach

• Computational droplets : representative droplets with same properties and weighting factor

5

Gas phase Liquid phase

(water droplets)
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I. WUHAN SPRAY
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EXPERIMENTAL DATA

➢Spray envelope ➢Water flux density at the ground floor
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Configuration and laser sheet visualization 

of the spray from [1]

1.26 ± 0.18𝑚

𝜃1/2 = 42°

➢ Cold flow
ሶ𝑞 = 1 𝐿/𝑚𝑖𝑛, 𝜃1/2 = 42°, 𝑑0 = 90𝜇𝑚



BASE CASE SIMULATION RESULTS

➢Spray envelope ➢Water flux density at the ground floor
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Default FDS 6.7.6

0.7 ± 0.1𝑚

1.26 ± 0.18𝑚
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➔ Extensive numerical analysis



TRAJECTORY OF A PARTICLE
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RAMIREZ REDUCTION FUNCTION
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Very 

dense

Very

dilute

𝐹𝐷

𝐹𝐷0
≅ 1 ⇒ 𝐹𝐷 ≅ 𝐹𝐷0 ~ ISOLATED particle

𝐹𝐷

𝐹𝐷0
≅ 0.6 ~ 60% of 𝐹𝐷0

• Two droplets

• Same size

• Perfectly aligned

𝑢𝑑,1

Droplet 1

𝑢𝑑,2

Droplet 2

Idealized configuration…

Applicability to a full spray?
 Τ𝐿 𝑑

(𝛼 =
𝑉𝑤𝑎𝑡𝑒𝑟

𝑉𝑐𝑒𝑙𝑙
) 

 𝑅𝑒𝑑



II. NOVEL DRAG REDUCTION (NDR)

CORRELATION

M. Thielens, Y. Liu, B. Merci, T. Beji (2022)

Comprehensive analysis of a novel droplet volume fraction-based drag reduction correlation in a numerical study

on water sprays with different level of density

https://doi.org/10.1007/s10694-022-01317-z

https://doi.org/10.1007/s10694-022-01317-z


NOVEL EQUATION

with 𝛼 the local droplet volume fraction

And 𝐴, 𝐵 & 𝑛 are parameters that needs to be fixed

⇒ 𝐴 = 5 × 10−5, 𝐵 = 0.11 & 𝑛 = 106
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INFLUENCE OF 𝐴, 𝐵 & 𝑛
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INFLUENCE OF 𝐴, 𝐵 & 𝑛
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Translation of the plateau
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INFLUENCE OF 𝐴, 𝐵 & 𝑛
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n ↘

Flattening of the slope
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ENGINEERING CALIBRATION
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+ 𝐵

𝐴 = 5 × 10−5, 𝐵 = 0.11, 𝑛 = 106



III. EXPERIMENTS VS

NOVEL MODEL SIMULATIONS
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WUHAN SPRAY

➢Spray envelope ➢Water flux density at the ground floor
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Modified FDS 6.7.6, 𝐴 = 5 × 10−5, 𝐵 = 0.11 & 𝑛 = 106

0.7 ± 0.1𝑚

1.26 ± 0.18𝑚
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SENSITIVITY ANALYSIS

➢ Mesh refinement

• Better simulation results for the gas phase

• Eulerian – Lagrangian not so trivial
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WUHAN SPRAY : SENSITIVITY ANALYSIS
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IV. OTHER SPRAYS
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EXTENDED COLD FLOW ANALYSIS

➢ 3 sprays with different levels of density

Simulation results with NDR model for less dense sprays are not deteriorated
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Wuhan VTT Fukui

ሶ𝑞 1.00 Τ𝐿 𝑚𝑖𝑛 0.35 Τ𝐿 𝑚𝑖𝑛 0.44 Τ𝐿 𝑚𝑖𝑛

𝑑0 90 𝜇𝑚 79 𝜇𝑚 258 𝜇𝑚

𝜃1/2 42° 30° 28°

‘Dense’ Less ‘dense’



VI. INTERACTION HOT AIR JET
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FM GLOBAL SPRAY

➢ Water spray 

• ሶ𝑞 ≅ 0.084 𝐿/min

• 𝑑0 = 60 𝜇𝑚

• 𝑣0 = 26 𝑚/𝑠

• 𝜃 Τ1 2 = 15°

• 𝑁𝑝 = 50 000

• uniform distribution

➢ Hot air jet

• 𝑢𝑗𝑒𝑡 = 4.2 𝑚/𝑠

• 𝑇𝑗𝑒𝑡 = 205 °𝐶
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590 𝑚𝑚560 𝑚𝑚

254 𝑚𝑚

1220 𝑚𝑚

𝑑 = 72 𝑚𝑚

30°

𝑧 = 0
𝑧𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛= 320𝑚𝑚



VELOCITY FIELD
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Vertical velocity

[m/s]Default FDS NDR - A5E5 B011 N1E6
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TEMPERATURE FIELD
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Temperature [°C]
Default FDS NDR - A5E5 B011 N1E6
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RDM

Requires a structured effort and a continuity beyond this PhD

➢ Two platforms

• GitHub (code hosting platform with a version control system)

• OSF (code hosting and corresponding documentation)

31



OSF

There are 5 repositories : 3 in-house codes       & the 2 modified fds codes       

32



Drag modelling 

in dense sprays
Conclusion

Research 

Data ManagementIntroduction



Drag modelling 

in dense sprays
Conclusion

Research 

Data ManagementIntroduction



CONCLUSION

➢Novel approach

• Complexity of the entire spray

• Droplet volume fraction-based drag reduction

• Substantially reducing drag in dense regions of the sprays (➔ water mists)

• No drag reduction in dilute regions

➢ Tested against 3 sprays with different levels of density

• Optimum values (𝐴, 𝐵 & 𝑛) depend on the case and the mesh

• Not final values but very promising

➢ Tested against a 4th spray with the interaction of a hot air jet

• Very promising
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THESIS

https://biblio.ugent.be/publication/8773335
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https://biblio.ugent.be/publication/8773335
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