Advanced Computational Fluid Dynamics Modelling of Water Sprays in Fire-Driven Flows

22nd IWMC- 11/10/2023 Martin **Thielens**

Promotors: Tarek **Beji** Bart **Merci**

Mandate number : 1182919N

Introduction

Drag modelling in dense sprays Research Data Management

<u>در</u> ۳

Conclusion

IRODUC

> Long-term objective:

'Improve the predictive capabilities of CFD modelling of water sprays interaction with fire-driven flows'

Evaluate existing models:

> More fundamental approach \rightarrow stepwise approach

- Simple test cases prior to more complex test cases
- In-house code prior to CFD

FIRE DYNAMICS SIMULATOR

≻ FDS 🖵

- Particularly appropriate for thermally-driven flows ullet
- Simulation of water sprays : Eulerian-Lagrangian approach •

Gas phase

Liquid phase (water droplets)

Computational droplets : representative droplets with same properties and weighting factor \bullet

¢ 1057

Introduction

Drag modelling in dense sprays

I. <u>WUHAN SPRAY</u>

Research Foundation Flanders Opening new horizons

EXPERIMENTAL DATA

Cold flow

 $\dot{q} = 1 L/min$, $\theta_{1/2} = 42^{\circ}$, $d_0 = 90 \mu m$

Spray envelope

> Water flux density at the ground floor

Configuration and laser sheet visualization of the spray from [1]

BASE CASE SIMULATION RESULTS

Default FDS 6.7.6

> Spray envelope

Research Foundation Flanders Opening new horizons

→ Extensive numerical analysis

10

> Water flux density at the ground floor

TRAJECTORY OF A PARTICLE

RAMIREZ REDUCTION FUNCTION

- Two droplets
- Same size
- Perfectly aligned

II. NOVEL DRAG REDUCTION (NDR)

CORRELATION

M. Thielens, Y. Liu, B. Merci, T. Beji (2022) Comprehensive analysis of a novel droplet volume fraction-based drag reduction correlation in a numerical study on water sprays with different level of density https://doi.org/10.1007/s10694-022-01317-z

NOVEL EQUATION

INFLUENCE OF A, B & n

GHENT

 $\frac{F_D}{F_{D0}} = (1 - B)e^{[-(\alpha + 1 - A)^n]} + B$

$A \searrow$

Translation of the transition region

INFLUENCE OF A, B & n

GHENT

 $\frac{F_D}{F_{D0}} = (1 - B)e^{[-(\alpha + 1 - A)^n]} + B$

B↗

Translation of the plateau

INFLUENCE OF A, B & n

GHENT

 $\frac{F_D}{F_{D0}} = (1-B)e^{[-(\alpha+1-A)^n]} + B$

n ∖ Flattening of the slope

ENGINEERING CALIBRAT ON

GHENT

 $\frac{F_D}{F_{D0}} = (1-B)e^{[-(\alpha+1-A)^n]} + B$

$A = 5 \times 10^{-5}, B = 0.11, n = 10^{6}$

III. <u>EXPERIMENTS VS</u> NOVEL MODEL SIMULATIONS

Research Foundation Flanders Opening new horizons

19

WUHAN SPRAY

Modified FDS 6.7.6, $A = 5 \times 10^{-5}, B = 0.11 \& n = 10^{6}$

Spray envelope

> Water flux density at the ground floor

SENSITIVITY ANALYSIS

- Mesh refinement
 - Better simulation results for the gas phase
 - Eulerian Lagrangian not so trivial

WUHAN SPRAY : SENSITIVITY ANALYSIS

Experimentso... Default - 2cm ⊖ – Default - 1cm – Default - 0.5cm NDR - A5E5 B011 N1E6 - 2cm - NDR - A5E5 B011 N1E6 - 1cm NDR - A5E5 B011 N1E6 - 0.5cm

IV. <u>OTHER SPRAYS</u>

Research Foundation Flanders Opening new horizons

FENDED COLD FLOW ANALYSIS

\geq 3 sprays with different levels of density

<i>q</i> 1.00 <i>L/min</i> 0.35 <i>L/min</i> 0.44 <i>L/min</i>		Wuhan	VTT	Fukui
	ġ	1.00 <i>L/min</i>	0.35 <i>L/min</i>	0.44 L/min
a_0 90 μm 79 μm 258 μm	d_0	90 µm	79 µm	258 µm
$\theta_{1/2}$ 42° 30° 28°	$ heta_{1/2}$	42°	30°	28°

'Dense'

Simulation results with NDR model for less dense sprays are not deteriorated V

Less 'dense'

VI. INTERACTION HOT AIR JET

Research Foundation Flanders Opening new horizons

FM GLOBAL SPRAY

➤ Water spray

- $\dot{q} \cong 0.084 L/min$
- $d_0 = 60 \ \mu m$
- $v_0 = 26 m/s$
- $\theta_{1/2} = 15^{\circ}$
- $N_p = 50\ 000$
- uniform distribution

➤ Hot air jet

- $u_{jet} = 4.2 \ m/s$
- $T_{jet} = 205 \ ^{\circ}C$

d = 72 mm

VELOCITY FIELD

Research Foundation Flanders Opening new horizons

IIII GHENT

UNIVERSITY

TEMPERATURE FIELD

¢ 1057

Introduction

Drag modelling in dense sprays

Introduction

Drag modelling in dense sprays Research Data Management

Requires a structured effort and a continuity beyond this PhD

> Two platforms

- GitHub (code hosting platform with a version control system)
- OSF (code hosting and corresponding documentation)

There are 5 repositories : 3 in-house codes \clubsuit & the 2 modified fds codes \Box

*	SF HOME –			My Projects Sear
		Dashboard		Cr
		Search your projects		
		Go to My Projects to organ	ize your work or search OSF	
		Title ^ Y	Contributors	Modified ^
	Ţ	Novel two-zone model for the heat-up and evaporation of a liquid droplet (two-way coupling)	Thielens, Merci, and Beji	2022-09-07 5:5
		Novel Drag Reduction Model for the modelling of water sprays	Thielens, Merci, and Beji	2022-09-07 3:0
		Novel two-zone model for the heat-up and evaporation of a liquid droplet (one-way coupling)	Thielens, Merci, and Beji	2022-09-07 3:0
	斋	Droplet heat-up and evaporation : in-house code (two-way coupling)	Thielens, Merci, and Beji	2022-09-07 3:0
	斋	Droplet motion	Thielens, Merci, and Beji	2022-09-07 3:0
GHE		Arizona State University	Rown Research Hospital L	Carnegie Mellon Universit

Introduction

Drag modelling in dense sprays Research Data Management

Introduction

Drag modelling in dense sprays Research Data Management

<u>در</u> ۳

Conclusion

NCLUSION

- > Novel approach
 - Complexity of the entire spray
 - Droplet volume fraction-based drag reduction
 - Substantially reducing drag in dense regions of the sprays (\rightarrow water mists)
 - No drag reduction in dilute regions
- Tested against 3 sprays with different levels of density
 - Optimum values (A, B & n) depend on the case and the mesh
 - Not final values but very promising
- \succ Tested against a 4th spray with the interaction of a hot air jet
 - Very promising

https://biblio.ugent.be/publication/8773335

Martin THIELENS is a PhD student who holds a grant for fundamental research from FWO – Vlaanderen (mandate number 1182919N)

Department of Structural Engineering and Building Materials Research Group Fire Safety Science and Engineering

Е martin.thielens@ugent.be +32 (0)9 264 32 91 Т

www.ugent.be

Ghent University l fl @ugent y **Ghent University** in

Your Partner in Safety, Security and Risk-Based Engineering + Consulting

Dr. ir. Martin Thielens Project Engineer Jensen Hughes

11/10/2023

JENSEN HUGHES

www.jensenhughes.com/europe/belgium