

GHENT UNIVERSITY

THE 23RD INTERNATIONAL WATER MIST CONFERENCE – ANTWERP, BELGIUM, 18 – 19 SEPTEMBER 2024

CFD MODELLING OF WATER OF WATER SPRAY

IMPINGEMENT COOLING

Pedro Javier Vargas Rolón¹, Zoubir Acem², Rabah Mehaddi², Laurine Cappon², Tarek Beji^{1*}

- ¹ Ghent University (UGent), Belgium,
- ² LEMTA, Université de Lorraine, France

OF STRUCTURAL ENGINEERING AND BUILDING MATERIALS

INTRODUCTION

WATER SURFACE COOLING

Water surface cooling can be efficient in:

- preventing the pyrolysis of combustible materials (to limit flame spread and fire growth), and
- avoiding excessive heating of structural elements

(which can potentially lead to structural damage).

4

COMPUTATIONAL FLUID DYNAMICS (CFD)

Advanced tool which can:

- further improve our understanding of the physics,
- support or be a good alternative to costly experimental campaigns, and
- be used for design.

Challenge: Reliability of CFD

 \rightarrow need for validation studies

<u>EXPERIMENTAL TESTS</u> (LEMTA, FRANCE)

6

GENERAL CONFIGURATION

- Horizontal 1 m × 1 m steel plate,
 3.1-mm thick
- Radiant panel: heating from below
- Water mist nozzle above the plate

HEATING

- Radiant panel positioned at 20 cm below the steel plate
- Gas flow rate varying between 0.50 and 1.40 g/s
- Temperatures in the center of the plate between 300 and 800°C

WATER SPRAY SYSTEM

- Water mist nozzle (Tyco Protectospray)
- Positioned at 50 cm above the center of the plate
- Water pressure: 6 bar
- Water flow rates: 5 and 10 L/min
- 60° conical jet
- Volume-median droplet diameters between 220 and 245 µm

STEEL TEMPERATURE MEASUREMENT

 Thermocouples directly welded onto the surface (connection made by the steel)

Side exposing to cooling

Positioning of the thermocouples

Side exposing to heating

CFD MODELLING (UGENT): FIRE DYNAMICS SIMULATOR FDS 6.8.0

GENERAL CONFIGURATION

- Computational domain: 1.2 m x 1.2 m x 1.2 m ullet
- 'OPEN' boundary condition at the sides (----)

HEATING

- Solve 1D Fourier's equation
- Specify the thermal properties of steel (e.g. see table)
- Specify NET_HEAT_FLUX at the surface of the radiant panel

to obtain the experimental steel temperature prior to cooling

Temperature (°C)	200	300	400	500	600	
$k \ (W \cdot m^{-1} \cdot K^{-1})$	51.1	44.5	39.1	34.8	31.7	
$c_p(J \cdot k g^{-1} \cdot K^{-1})$	500.3	526.4	554.6	608.9	707.4	8

.g. see table) of the radiant panel ture prior to cooling

WATER SURFACE COOLING

- $\dot{q}_w'' = h_w \left(T_p T_q \right)$ Heat flux due to cooling
 - h_{w} : convective heat transfer coefficient
 - T_p : plate surface temperature
 - T_{a} : gas temperature

Convective heat transfer coefficient (see FDS guides)

- 1) Constant, $h_{W} = 300 \text{ W/(m^2 \cdot K)}$ (former default in FDS), or
- 2) Correlation

$$\widehat{\underline{m}}_{\text{GHENT}} \quad h_w = \frac{\text{Nu} \times k_g}{L} \quad \text{where} \quad \text{Nu} = 0.0$$

)296 Re^{4/5}Pr^{1/3}

NUMERICAL PARAMETERS

- Sensitivity analysis on the gas phase cell size (10 cm, 5 cm or 2.5 cm): good convergence with 5 cm.
- Number of radiation angles = 100 (default), no significant difference with 200.
- The default number of computational droplets Np = 5,000 droplets per second suitable.

RESULTS

16

Gas flow rate = 0.25 g/s and Water flow rate = 5 L/min

Gas flow rate = 1.40 g/s and Water flow rate = 5 L/min

Gas flow rate = 0.25 g/s and Water flow rate = 10 L/min

Gas flow rate = 1.00 g/s and Water flow rate = 10 L/min

<u>CONCLUSIONS AND</u> FUTURE WORK

CONCLUSIONS

- Good performance of the correlation for steel temperatures of 200 – 300°C.
- Issue with high steel temperatures (above 550°C): \rightarrow no or • delayed cooling.

Current model in FDS:

$$h_{\rm s} = \max\left(100, 0.0296 \,{\rm Re}_L^{\frac{4}{5}} \,{\rm Pr}^{\frac{1}{3}} \,\frac{k_{\rm p}}{L}\right) \quad ; \quad {\rm Re}$$

22

FUTURE WORK

- Explore different other available correlations.
- More experimental and validations studies.

Tarek Beji

DEPARTMENT OF STRUCTURAL ENGINEERING **f Ghent University** AND BUILDING MATERIALS @ugent y

- Е Tarek.Beji@UGent.be
- Т +32 9 264 98 46
- Μ +32 465 76 44 17

www.ugent.be

Ghent University

in