A comparison of GHG emissions of fire suppression systems

International Water Mist Conference 24. September 2025 - Manchester

Kjell Audun Flåten
Senior Engineer – Fire Suppression
kjell.flaten@multiconsult.no

Voldsløkka skole

- key to building performance
- involve significant costs

not included in the building's climate footprint

Estimated GHG emissions from HVAC systems

- Model building : ~ 20 %
- Advanced performance building : ~ 40 %
- Retrofit: ??

Outlook:

- Fewer new builds, more retrofits
- Focus on the structural shell

will become more critical in future building design

Green HVAC - greenhouse gas calculator

- No adequate tools available
- Necessary for executing Green HVAC projects
- Simplifies greenhouse gas calculations
- Improved visual presentation

The tool is not the product – the service is!

ZEN-CASE YDALIR

Allocation of emissions to specific components

A sandbox for exploration

- Typical Office Building
- Developed by: Grønn VVS & Hybridene
- Inspired by actual new builds in Eastern Norway
- Goal: Study solutions with transferable value
- Typical office floor: ~850 m²
- Four floors + technical rooms

Background

- Several studies from GVVS identified that pipes from fire suppression systems are among the largest emission sources in HVAC installations
- We had to get to the bottom of this!
- The study for GVVS is supplier-independent
- Focus on how greenhouse gas emissions can be reduced

- Conventional sprinkler system (CS) Calculations are based on estimated dimensions
 derived from pre-calculation tables. Conservative coverage using standard sprinkler heads and
 fixed piping down to the ceiling level
- Optimized sprinkler system (OS) Fully hydraulically calculated with optimized sizing, utilizing available technologies such as extended coverage sprinkler heads and flexible sprinkler hoses down to ceiling level.
- Low-pressure water mist (LWM) Optimized based on product-specific requirements
- **High-pressure water mist (HPWM)** Optimized based on product-specific requirements

Requirements

- Sprinklersystem: NS-EN 12845:2015+A1:2019 Fixed firefighting systems Automatic sprinkler systems Design, installation and maintenance, FG-930 (Norwegian Guidelines for NS-EN 12845)
- WaterMist: NS-EN 14972-1:2020 Fixed firefighting systems Water mist systems Part 1: Design, installation, inspection and maintenance
 NS-EN 14972-3:2021 Fixed firefighting systems Water mist systems Part 3: Test protocol for office, school classrooms and hotel for automatic nozzle systems
- Water supply / Backflow prevention Cf. NS-EN1717
- Water supply curve
- Pipeseries

Tabell 2 - Rørtyper for de forskjellige systemene.												
System	Materiale	Dimensjon	Sammen - føyning	C-faktor 120								
KS	Sorte stålrør - *Mellomserie	DN 25-100	Rille/gjenge									
os	Sorte stålrør - *Mellomserie	DN 25-100	Rille/gjenge	120								
LV	Syrefast	DN 15-50	Pressfitting	150								
HV	Syrefast	DN 10 - 50	Klemring	150								
 *Referanser "Mellomserie" angir godstykkelse iht. NS-ISO 4200 område D (se Tabell 3)												

Tabell 1 - Forutsatt tilgjengelig vannmengde og trykk.

Q	Р					
[l/min]	[bar]					
0	4,3					
750	4,0					
900	3,7					
1 100	2,9					
1 400	1,5					

Interfaces

- This study includes only fire suppression systems
- Installation components *not* included as: base structures, signal cabling, power connections, and instrumentation for pump systems.
- Labourcost for Cable installation, system integration, and programming are excluded from the scope
- These deliverables contribute to both the carbon footprint and the total cost of installation

Results

Weight

Economy

Lifecycle parameters

Produktstadiet Gjennom- føringsstadiet					Bruksstadiet							Livsløpets sluttstadium				Konsekvenser utover systemgrensen	
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7*	B8	C1	C2	C3	C4	D
Råvarer	Transport	Produksjon	Transport	Anlegg-, bygge- og monteringsarbeid	Bruk	Vedlikehold	Reparasjon	Utskiftning	Ombygging	Energibruk i drift	Vannforbruk i drift	Transport i drift	Riving	Transport	Avfallsbehandling	Avhending	Material- og energigjenvinning og ombruk av materialer og eksport av egenprodusert energi

Tabel 12 - Orange celles is included

A Challenge to the Industry

- Pipe Series
- Exploring alternatives
- Challenge to suppliers: Regulations, testing, and approval
- Prefabrication
- Cutting waste and surplus
- Transport
- Disposal and Re-use
- Reuse potential
- Potential for material and energy recycling

Risk & Safety

- Being slightly conservative is understandable
- Climate and environmental factors also represent risks – at a broader scale

- Safety considerations always comes first
- GHG emissions should be included in a holistic assessment
- Solutions should be reviewed by specialists on a project-by-project basis!

You're welcome to read our complete report!

Available on our website:

https://www.multiconsult.no/gronn-vvs-skal-halvere-utslippene-fra-vvs-anlegg/

