The Nature of Fighting Fires with Water Mist Sprays

Carsten Palle, www.vid.eu

Distribution: 90% of Water in droplet of diametres < 1mm

What is a Fire

Fighting Fires

Control of fires

- Fire stop accelerating
- Fires stop spreading

Suppression of fire

- Heat output reduces
- Fire is contained.

Extinguish

No combustion processes

Water

- H(1) O(16) Mole H(1) 18g
- Water = Liquid H_2O
- 1 mole Water Vo=18 ml
- Steam = Gas H_2O
- 1 mole steam V_o =0,0224m³ (0°C, 1 bar)

Phase change 1mole Water + 43000 Joule => 1mole Steam

Methods of Fighting Fires

Chemical fire processes

Oxidation of Hydrogen-Carbon fuels 1kg O_2 (31,25 moles) => heat out put HRR 13.000.000jouls O_2 concentration < 13% Ep < Ec => HRR = 0Ep = Energy production Ec = Energy consumption **No Fire**

O₂ concentration > 13% Ep > Ec => HRR > 0 Fire

> Atm. Gas concentration N₂: 78,5% O₂: 21% Co, Co, H₂O₉,< 0,5

Inert gas production

Oxidation processes connects atm.oxygen to hydrogen and carbon from fuel, nitrogen remains in atmosphere => CO₂, CO, H₂O (conbustion) + N₂

Inert gases from fires

Nitrogen and combustion reduces O₂ % in the vicinity of oxidation processes

Steam

Steam is an inert gas Nitrogen is an inert gas Combust gasses are inert

Calculation examples

Fire size

HRR:13 MW (8m² hydrocarbon)

Evaporation of water

Max.moles H2O HRR/47000 = 277 moles/sec = 5 kg/sec

 $H_2O_g = 6m^3/sec (1bar, 0^{\circ}C)$

Oxygen consumption

HRR/13MW = 1 kg/sec = 31,25 moles/sec Combustion gases CO₂ ,CO, H₂O: 47 moles/sec => 1,04m³/sec (0^oc) N₂: 118 moles/sec =>2,6m³/sec (0^oc)

Conclusion

Water mist spray primarily fight fires by cooling chemical processes and inerting ambients of oxidation processes.

=>

- 1. Water mist is most effective in locations with
 - 1. Large fires => large steam production
 - 2. High heat => Large steam production & little steam condensation
 - 3. Enclosures => Reduced oxygen supply => fast oxygen depletion
 - 4. Little ventilation => increased oxygen depletion effect.
- 2. Water mist spray mainly fights fires by
 - 1. Cooling pyrolysis processes
 - 2. Inerting ambients where the oxidation processes occur.
- 3. Water Mist sprays may in some situations be applied to blow fires out.

Thank you

Carsten Palle <u>cp@vidaps.dk</u> www.vid.eu