Compensation of Missing Fire Partitions in Health Care Buildings by High Pressure Water Mist
Modern Building Structures

Background

- Modern buildings are often designed openly and transparent with preference of exposed glass and steel structures.

- Fire protection becomes a challenge due to wide spread open connections between parts of the building.

- Though conventional sprinkler systems are used to compensate missing fire partitions, water mist technology is valued to offer extended cooling, thus preventing fire propagation and securing escape conditions.
Case Study Hospital LKT Baden

Some Facts

- One of the most modern and advanced hospitals in Europe located next to Vienna
- 6 operation rooms, 450 beds
- Overall hospital floor area is 60,000 m²
- 3 connected buildings (pavilions) each having 3 levels
- 6 years construction time with completion in 2016
- 190 Mio. Euro investment
Case Study Hospital LKT Baden

Fire Protection Requirements

- Missing compartmentation between entrance hall and pavilions to be compensated by an automatic fire fighting system to prevent fire propagation

- Control and suppression of fires in the entrance hall (e.g. cafeteria, meeting areas) and the adjacent pavilion buildings

- Protection of exposed glass facades and steel structures to compensate structural fire protection measures
Fire Protection Concept

- Protection concept based on a wet high pressure water mist system for all areas adjacent to the entrance hall

- System design based on OH1 risk classification with 72 m² operational area (room + ceiling void) for 60 minutes operation time

- System approval (VdS) based on internationally recognized test protocols for fire tests and component tests by CEN TS 14972

- This fulfils as well BS 8489-1 requirements

- System acceptance by the local fire authority

Case Study Hospital LKT Baden
Case Study Hospital LKT Baden

Fire Protection Concept

- Challenge due to ceiling height up to 12 m in the entrance hall

→ Requirement for fire tests for heights up to 12 m ceiling height
System Testing and Acceptance Process

Definition of Fire Scenario

- Full scale fire test scenario developed based on requirements of CEN TS 14972 standard Annex B

- Fire test defined based on public spaces test of IMO A800 concerning
 - Fire load
 - Arrangement of fire load
 - Ventilation conditions
Fire Tests for Greater Ceiling Heights

Fire Test Arrangement and Scenarios

- Test hall of 30 m x 20 m floor area with 24 m height
- Ceiling at 12 m height with open perimeters
- Natural ventilation conditions / No enclosure effect
- Fire tests under one and between four nozzles
- Automatic glass bulb water mist nozzles
- Fire test duration 30 minutes
Fire Tests for Greater Ceiling Heights

Fire Load

- Fuel package adapted from IMO A800 with 2 groups of 4 sofas each made of polyether foam
- One sofa group used as ignition source, one as target
- 50 cl Heptane as igniter, being placed under the centre sofa
Fire Tests for Greater Ceiling Heights

Evaluation Criteria

- Temperature reduction at ceiling and in the vicinity of the fire
- Reduction of heat radiation
- Fire control and suppression to avoid fire propagation to the target sofa group
Fire Tests for Greater Ceiling Heights

Measurements

- Temperature at sofas (T1.1 to T1.4 and T2.1 to T2.4)
- Ambient temperature at 1,5 m Height above floor (TA1 to TA6)
- Heat flux
Fire Tests for Greater Ceiling Heights

Fire Test Results under 4 Nozzles

- Activation of 4 nozzles within 2 min 50 sec
- Rapid temperature and heat radiation reduction
- Fire is controlled / No propagation to target sofas
Fire Tests for Greater Ceiling Heights

- T0: ignition of the heptane pan
- T0+1 min: propagation on mattress surface
- T0+2 min: fire is spreading on the top of ignition mattress.
- T0+2 min 15 s: HRR is increasing rapidly
- T0+2 min 44 s: operation of first nozzle. Right hand mattress stats to pyrolyse.
- T0+2 min 45 s: 2nd nozzle operates
- T0+2 min 48 s: 3rd nozzle operates
- T0+2 min 51 s: 4th nozzle operates. Water mist reaches floor level
- T0+3 min 07 s: fire control with slight suppression.
- T0+3 min 53 s: Remaining flames at floor level
- T0+4 min: mattresses continue to burn slowly
- T0+6 min
- T0+10 min
- T0+16 min
- T0+18 min 20 s: no more flames. End of test

- T0: Start of fire test
- t=1min
- t=2min
- t=2min15s
- t=3min07s
- t=3min53s
- t=4min
- t=6min
- t=10min
Fire Tests for Greater Ceiling Heights
Fire Tests for Greater Ceiling Heights

Fire Test Results under 1 Nozzle

- Activation of 3 nozzles within 2 min 50 sec
- Rapid temperature and heat radiation reduction
- Fire is controlled / No propagation to target sofas
Fire Tests for Greater Ceiling Heights

T₀: ignition of the heptane pan
T₀+1 min: start of propagation on mattress surface
T₀+2 min 08 s: flame height 2 m
T₀+2 min 30 s: start of pyrolysis
T₀+2 min 35 s: 1st nozzle
T₀+2 min 39 s: 2nd nozzle operates
T₀+2 min 51 s: 3rd nozzle operates
T₀+3 min
T₀+4 min 17 s: start of fire control. Water-mist reaches floor level.
T₀+4 min 17 s: remaining flames at floor level
T₀+6 min 31 s: remaining flames at floor level
T₀+7 min
T₀+10 min
T₀+17 min 39 s: end of test
Fire Tests for Greater Ceiling Heights

Test 4: Ceiling temperatures

Test 4: Heat Fluxes

Test 4: Ambient temperatures between source and target groups
Fire Tests for Greater Ceiling Heights

Test Certificate

- Fire tests conducted and certified by the internationally recognized fire test laboratory CNPP

- Certified system performance

- Specification of system design parameters
 - Nozzle type
 - Nozzle K-factor
 - Nozzle pressure
 - Nozzle spacing
 - Maximum installation height
Protection Concept

- Nozzle layout based on VdS approved fire test results up to 5 m ceiling height

- For ceiling heights up to 12 m, specific fire tests (CNPP) have determined the nozzle layout

- Wet system in the entrance hall ceiling with reduced nozzle spacing along all glass facades

- Wet system in all rooms and false ceilings (3 levels) adjacent to the entrance hall in the 3 pavilion buildings
Case Study Hospital LKT Baden

Protected Areas
Protection Concept

- System design to operate up to 14 nozzles along glass facades (26 m) in the entrance hall respectively 72 m² operational areas in the adjacent buildings

- High pressure pump with 4+1 x 120 l/min at 120 bar (one redundant pump)

- 2 x 2000 l break tank with infill from town’s main water supply for 60 minutes system operation

- 1 alarm valve and 10 zone valves
Conclusion

High pressure water mist allows for architecturally pleasant solutions for buildings with extended cooling potential to prevent fire propagation and additional protection of exposed glass and steel structures to secure safe escape routes for people.

System design must be part of the overall fire safety concept of the building and be evaluated by authorities having jurisdiction.
Thank you for your attention!

Dipl.-Ing. Ruediger Kopp
General Manager Fixed Systems
ruegender.kopp@fogtec.com