

# Water Mist Systems for Power Infrastructure Protection

#### Webinar, October 2020



#### Dipl.-Ing. Ruediger Kopp

Managing Director - Fixed Systems FOGTEC Fire Protection www.FOGTEC.com

# Water Mist for Power Infrastructure









#### **Motivation for Water Mist Protection**

- Refurbishment or extension of power infrastructure in growing mega cities
- Up to date fire protection measures required for the power grid
- Water mist is an established solution for cable tunnels and transformer substations protection since 20 years
- Systems tested and certified based on international standards as prEN 14972 with approvals e.g. from VdS
- Reduction of down-times in case of fire

# Water Mist for Power Infrastructure





# Cable Tunnel Case Study at Singapore Power



#### Transformer Sub-Station Case Study at DEWA in Dubai





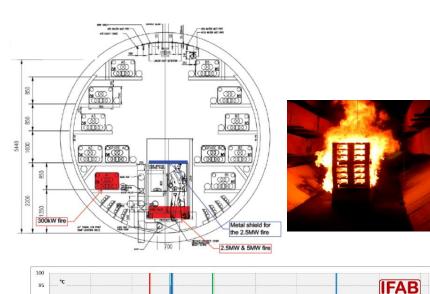


#### **Singapore Power Cable Tunnels**

- Singapore Power (SP) ensuring power to 1,3 million industrial, commercial and residential customers via their power grid network
- SP investment of 1,25 billion USD to build a 35 km long high voltage power transmission cable tunnel located 60 m under the surface to cope with the increasing power demand
- Construction of two intersecting tunnels, 14 utility buildings and associated access shafts
- North-South tunnel with a length of 18,5 km intersecting with the east-west tunnel of 16,5 km length






#### The Challenge

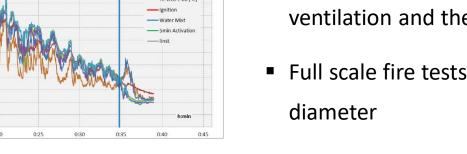
- First part of the project completed in 2005 with a 1,7 km long cable tunnel with a diameter of 3,5 m connecting the power station on the north of Singapore to the tunnel
- High pressure water mist system selected as most suitable fire fighting system for the first part of tunnel based on existing system certification



- Water mist installation to be adopted to the new 35 km long high-voltage power transmission cable tunnels
- A cable tunnel cross-section of 6 m diameter and even up to 9 m diameter at the shaft areas represented a challenge






65

0.10

5 MW, 3.5 m/s -> 1 m/ Temperature D10 left

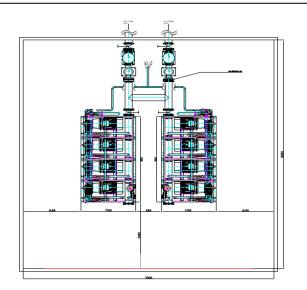
#### **The Solution**

- Fire protection concept developed in close co-operation with the end client and the fire consultant
- Power cables routed in cable troughs, thus assessment of the fire risk to connection points between the cable troughs and to the service vehicle running trough the cable tunnels
- Longitudinal ventilation conditions up to 5 m/s in the cable tunnels
- The water mist system full scale fire tested in conjunction with the ventilation and the fire detection system
- Full scale fire tests up to 5 MW conducted in a 60 m long mock-up with 6 m diameter



TE-D10-L-01 [\*








#### **Protection Concept**

- Deluge system along 35 km of cable tunnel with open nozzles based on full scale fire test results (25.700 nozzles)
- Cable tunnels zoned into fire fighting sections of 33 m length, equipped with a section valve (1.100 section valves) being activated by the fire alarm system
- Fire detection by linear optical heat detection
- Activation of 3 adjacent fire fighting sections in case of fire
- Cable supplies in the equipment buildings at the tunnel access shafts also protected by water mist







#### **Protection Concept**

- Small bore stainless steel pipework installed at the cable tunnel ceiling to avoid interference with service vehicle
- High degree of pipework pre-fabrication (75.000 m of stainless steel pipes)
- Jockey pump to prefill main pipe from pump unit to decentralized section valves, assuring shortest delays between system activation and water mist discharge
- High pressure water supply via 6 pump stations located in the equipment buildings at the tunnel shafts with each 10+1 x 98 l/min (140 bar) pump units with additional 100% redundancy
- Water mist system supplied by fresh water from 35 m<sup>3</sup> tanks at each pump station assuring 30 minutes autonomy







#### **DEWA Transformer Sub-Stations**

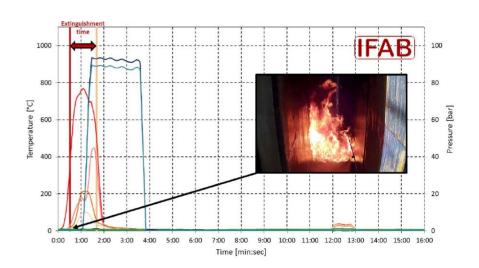
- Dubai Electricity & Water Authority (DEWA) ensures power supply to 670.000 customers with around 10 MW
- DEWA extends its power network with additional transformer sub-stations, due to increased power demand
- Further improvement of availability and efficiency of the electric supply to reduce power transmission and distribution network losses
- Water mist technology identified by DEWA as most suited to protect the new large scale transformers in their sub-stations







#### **The Challenge**


- Transformers with overall sizes of up to 5,7 m by 8,4 m and 5,4 m height located in enclosures with more than 60% front wall and roof opening
- Enclosure size 10,5 m x 8,0 m with 7,5 m height
- Expected ventilation conditions within the enclosures of up to 4 m/s
- System to be tested and certified by a certification body accredited by Dubai Civil Defense
- System acceptance based on VdS and TÜV certification
- First part of the project includes protection of 42 transformers in 6 sub-stations





#### The Solution

- Full scale fire tests with a representative mock-up
- Water mist system performance evaluated in full scale fire tests following the requirements of NFPA 750 and prEN 14972 standards
- Test mock-up of 10,5 m x 8,0 m with 7,5 m height with open top and more than 60% front opening
- Pool and flowing fire tests with fire sizes of up to 10 MW at forced ventilation of 4 m/s









#### **Protection Concept**

- Grit soil underneath transformers to limit transformer oil spread in case of leakage
- Deluge local protection system surrounding the transformers with open nozzles based on full scale fire test results
- Transformers equipped with flame detectors for identification of fires at the fire alarm panel
- Each transformer equipped with a section valve being opened by a thermally activated glass bulb via a hydraulic sensor line or by the signal of the fire alarm panel via a push button
- Safety concept foresees activation of one transformer in case of fire





#### **Protection Concept**

- Small bore stainless steel pipework installed at the perimeters of the transformer walls minimizing interference with service and maintenance
- Jockey pump prefilling main pipe from pump unit to decentralized section valves assuring shortest delays between system activation and water mist discharge



- High pressure water supply via 6 pump stations located in the sub-station sprinkler pump rooms with 4 x 120 l/min (120 bar) pump units with 100% diesel unit redundancy
- Water mist system supplied by fresh water from tanks at each pump station / 15 m<sup>3</sup> water requirement for 30 minutes system autonomy

# Conclusion



- High pressure water mist offers a proven and certified fire protection solution to ventilated large scale cable tunnels and transformer sub-stations in power infrastructure projects
- Due to its physical properties water mist is providing effective and safe fire protection to assure business continuity to power network operators and businesses depending on energy supply



# **Thank You for Your Attention**